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Abbreviations, Symbols and
Notation

ARX autoregressive model with external input

LQG linear-quadratic controller with Gaussian disturbance
SISO single-input single-output system

MIMO multiple-input multiple-output system

PID proportional-integral-derivative controller

pf probability function

pdf probability density function

x quantity, scalar, or vector

¥ set of possible values of the quantity =

T number of elements of vector x

x’ transposition of x

x proportional sign

[l Euclidean norm

I, identity matrix of dimension n

tr(+) matrix trace

f+ fC[) p(d)f, conditional p(d)f

N(p, R) multivariate normal distribution

Ezx, Elz|ly] expected value, conditional expected value of =
var(x variance of x

)
Dir(f|lf)  Kullback-Leibler distance of p(d)fs f and f

t, T discrete time

Ty quantity = at the discrete time ¢

x(t) quantity containing all the past history z(t) = {z,}._,
Ut system input at time ¢

Yt system output at time ¢

dy vector consisting of input and output d; = [y}, uj]’

dret reference value of data at time ¢

©t state vector

Uy regression vector

U, data record

0 biggest time delay of data record
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SHNOBE YGRS 2

set of real numbers

set of natural numbers

tuning parameter of controller
decision ignorance

decision experience

decision action

decision innovation

model parameters

simulation length

control horizon
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Chapter 1

Introduction

This work concerns the task of controller design. Main effort is dedicated to
tuning of the controller being designed for uncertain system with constraints.
The tuning is then included in the LQG controller design algorithm.

This chapter presents an overall introduction to the problem with re-
marks about previous work in this topic. It also states the aims and layout
of the thesis.

1.1 Motivation

Control engineering deals with dynamic systems. Dynamic system is a part
of reality with defined external variables that influence the system in con-
trolled or uncontrolled manner. The former ones are called the control or
input variables and the latter ones are called disturbances. The observable
variables produced by the system are called outputs or controlled variables.
The dynamic system contains also an internal state. The general descrip-
tion of system dynamics falls into many fields of human interests. It can be
found in biological, social, economical, and technical environments. Thus,
the control engineering studying possibilities of controlling these systems is
very important.

The need of control for technical purposes was triggered by the indus-
trial revolution in 19th century, where increasing technical level of machines
being developed required proper regulation for their operation. The control
theory as a scientific discipline had limited practical use of its result due to
insufficient technical devices of that time. The controllers were constructed
using mechanical parts, such as the famous Watt’s regulator, which did not
allow the use of advanced control methods.

With the progress in the electronics, the control engineering made a fur-
ther step in the feedback control. This led to achievements such as the space
flight. The digital controllers supported by the progress in microprocessor
technology made possible the development of a new generation of controllers
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such as the model based, predictive, and adaptive ones.

With increasing capability of computers, more complicated mathemat-
ical models behind the controllers could be applied. On the other hand, a
new difficulty appeared. Sophisticated controllers are more difficult to apply
and commit. They are dependent on many tunable parameters, also called
tuning knobs, which have to be properly set up. Unfortunately, the meaning
of these tuning parameters is mostly far from the user’s understanding of the
control task and his objective. The setting up of the controller represents
an obstacle of its applicability.

This situation contributes to the gap between theory and practice, where
the advanced controllers developed in the control theory are not capable
to penetrate the industry. Because of the ease of use and good experi-
ence, in the practice, the classical controllers, such as proportional-integral-
derivative (PID) ones, are still dominating. Nevertheless, the modern model
based controllers have much higher control potential. The predictive nature
of model based controllers allows to find more efficient and precise control
strategy, while the capability of self-tuning [?] and adaptivity [?] keeps the
internal model up to date. The advantage of the modern controllers is even
more remarkable in the case of controlling systems with multiple inputs
and multiple outputs (MIMO), where abilities of the classical controllers are
limited.

Still the gap between theory and practice in the control engineering is
not closing. Even the opposite is true. Mathematical tools used in theory
offer new design technologies, more powerful analysis and reliable numerical
results. General approaches available have the difficulty to consider specific
requirements of the given technology and even more the specificity of indi-
vidual realizations. The setting of the modern controller is still a bottleneck
waiting for its solution.

1.2 State of the Art

When looking in the literature about the controller tuning, a lot of contribu-
tions can be found about the tuning of the PID controllers [1]. On the other
hand, there is almost nothing available about more complex controllers like
predictive, LQG or Hy, ones. The references [5], [4], [10] and [2] can be
cited as the exceptional examples.

Companies applying more complex controllers, typically predictive ones,
are mostly oriented to a specific technology. This gives them a chance to
gradually build up internal tuning guidelines based mainly on experience
and knowledge connected with the application domain. Different toolboxes
are publicly available that help with transforming some input information
to the controller parameters. For instance in the LQG design, the known
mathematical model of the plant, noise intensities, and input and state pe-
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nalization are easily converted into the controller parameters. In the Ho,
design, the nominal plant mathematical description with some standard pa-
rameter interval definitions can be used to initialize the controller parameters
[6]. Often, it is claimed that the required input information can be gained
from the final user and from identification toolboxes. In reality, available
pieces of expertise cannot be easily merged and the individual toolboxes are
not conceptually integrated.

Only recently, an attempt to create an automated controller design has
appeared [16]. This work is conceptually similar to the approach presented
in this thesis. It uses data measured on the real system to identify the
model and simulations to tune the controller performance. As opposed to
this thesis, the controller designed in [16] is based on the robust control
theory and also the identification method, control objectives, and tuning
itself are different.

1.2.1 Considered Properties of Controlled System
Constraints

An important property of the majority of real systems is that they have
imposed constraints on the variables that must not be exceeded. The con-
straints are caused by the definition of the external variables, such as the
percentage of opening a valve lies between zero and one hundred, or by
safety and technological reasons for temperature, pressure, and so on. Of
course, the tuned controller has to comply with the constraints. Otherwise,
the proposed signal has to be limited outside of the controller, which spoils
the controller internal prediction of the model behavior. The tuning param-
eters generally influence the effective range of controller variables, and so
the tuning is a possible tool for ensuring the constraint compliance by the
controller. The operational constraints that are used as a guide for the user
to setup a controller by specifying a working point or working range, are
also considered.

The general predictive controllers [8] are able to include the constraints
directly in the calculation. However these controllers are designed only for
known deterministic models, thus they are unusable for the task of the topic
of this thesis.

Uncertainty

In reality, the controlled system is never known completely. Its properties
can vary over time, which is caused for example by bearing wear of a ma-
chine. Other reason to consider the changes in system properties is caused
by the fact that reality, even if known perfectly, has to be simplified due to
the lacking ability of system identification method, or the controller model
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has to be of a restricted form because of the limited analytical or compu-
tational complexity of the controller. In this context, the system properties
are interpreted as model parameters.

Another phenomenon in system knowledge is the uncertainty of its prop-
erties in the stochastic or random meaning. Firstly, the system variables can
be influenced by a random noise. This is a common situation, and this kind
of uncertainty is described by the system model. There exist controllers
respecting this kind of stochasticity such as LQG controller with Kalman
filter [?]. Secondly, even the model parameters can be considered uncertain.
The designing of a controller for this kind of model leads to a hard problem
such as dual control [?]. The stochastic nature of the system properties can
be caused by physical construction, or by using an identification method for
limited class of models, such as the linear ones. Then the reality that does
not fit exactly to the identifiable model, is transformed into uncertainty of
model parameters.

There are two approaches of coping with the uncertainty in the model
parameters: The robustness and the adaptivity. A controller that is able to
stabilize a set of models from a certain neighborhood of a nominal model
is called robust [15, 14]. A controller that is able to track changes in the
real system by recursively updating the internal model using measured data
is called adaptive. The adaptive controller is able to react to the changes
of the slowly varying model parameters [?]. If fast change is possible, the
controller has to be capable to overcome the time period before the model
is adapted.

1.2.2 Basis of the Thesis

The methods of controller design presented in this thesis are based on and
continue in the effort to create a tool for the complete controller design de-
veloped in the Department of Adaptive Systems in Institute of Information
Theory and Automation, Academy of Sciences of the Czech Republic in
Prague. The task of designing a controller, starting with information sup-
plied by the user and measured data and finishing with prepared controller,
is thoroughly described in [?]. The basic methods used are the autoregressive
model with external input (ARX model) and the adaptive LQG controller.
However the presented task of setting controller tuning parameters has the
form of just several hints for the user. The problem of input constraints for
multidimensional constrained variables is solved by optimal signal cutoff at
the bounds for one step ahead prediction according to the total loss in the
sense of controller quadratic criterion. This is described in more detail in [?].
The disadvantage of the signal cutting is that it spoils the LQG prediction.

The task of prior prediction of control quality of the LQG controller is
presented in [?] in the form of quality evaluation from a sample simulation
run using the Monte Carlo approach. The controller quality is measured by
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a quadratic criterion. The model is considered to have uncertain parame-
ters, as the natural result of identification, and the controller is adaptive
to reduce the drawback of the uncertainty. In fact, the probability density
function (pdf) on model parameters is transformed into the pdf on the pre-
dicted values of the controller quality. This approach did not concern the
constraints in the quality evaluation.

The next progress in the development of the complete LQG controller
design including the automated tuning is described in [12]. It targets the
evaluation of the controller quality in the sense of input constraints of a
controlled uncertain model. The quality evaluation is used for the algorith-
mic optimization of the controller tuning parameters employing the golden
section as the optimization method. The pdf of the uncertain model param-
eters is sampled and for each sample a separate simulation run is performed.
The resulting controller quality is a statistic from the evaluated quality of
these simulations.

The developed algorithms are employed in the single-dimensional ver-
sion of Matlab software toolbox Designer [?]. This version of Designer was
successfully applied in field of biotechnology for task of yeast cultivation [?].

A drawback of the used golden section optimization method is that it
is suitable only for controllers with one tuning parameter. This limits the
usability of the tuning algorithm for just subset of the single input single
output (SISO) systems. The possible extension for the MIMO models and
multivariate tuning parameters is sketched in [12] by using sequential opti-
mization in every single optimization parameter, which can result in quite
a poor convergence.

1.3 Aims of the Thesis

The aim of this thesis is to solve the task of a multivariate controller set
up and to improve or even to allow the use of the modern controllers in the
practice.

In brief, it consists of the following items:

1. Translate the constraints imposed on the variables and other require-
ments on the control loop into the tuning parameter values of the
designed controller.

2. Create a tuning algorithm that considers uncertainty contained in the
identified model.

3. Solve the task generally for the MIMO controller with multiple con-
straints and multiple tuning parameters.

4. Combine the tuning algorithm with an identification method to form
a unified theoretical algorithmic approach to the controller design.
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5. Make the algorithm computationally feasible.

1.4 Methods Used

The presented approach of the controller tuning is based on the Bayesian
decision theory and the controller quality evaluation using the Monte Carlo
method [?]. The tuning as an optimization method is performed by the
sample path method [11]. The computational efficiency is supported by em-
ploying the stopping rules [?] using the Kullback-Leibler divergence [?]. The
uncertainty of the controlled plant is treated using the Bayesian approach
for the system identification [?] of the ARX and Markov chain (MC) models.
The considered controller is the LQG controller and the controller based on
fully probabilistic design [?]. The resulting algorithms are coded in Matlab.

1.5 Layout of the Thesis

The thesis is divided into 6 chapters briefly described below.

The introductory chapter 1 gives an overview of the control theory and
motivation for the thesis. It shows what is missing in the current state of
the art of the control design and presents the aims of this work.

Chapter 2 provides the basic mathematical and Bayesian decision mak-
ing background necessary for the following chapters. It describes the used
formalism such as probability distributions, dynamic system description,
Bayesian identification and sampling. All methods used in the rest of the
thesis are introduced with respect to the Bayesian theory.

Chapters 3 — J presents the new assets of this work. Chapter 3 develops
the solution of the controller tuning. All the aspects are firstly described
generally and then the mathematical formulation and solution is given. Two
functions are defined to evaluate the controller quality according the user’s
requirements. The evaluation is done under consideration of uncertain model
parameters. The effective evaluation using the on-line stopping rules is em-
ployed and the stochastic optimization problem algorithm described.

Chapter 4 applies the controller design method to the case of the adap-
tive LQG controller with the ARX model. It defines the controller tuning
parameters, and gives two possible initial tuning parameter estimates.

Chapter 5 illustrates the controller design process on several simulated
experiments.

Chapter 6 summarizes the results of this thesis with some general re-
marks and it points out some open problems to be solved in the near future.
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Chapter 2

Decision Making under
Uncertainty

Designing a controller for an incompletely known system model obtained
only from prior information and measured data influenced by random dis-
turbance inevitably leads to the problem of decision making under uncer-
tainty.

This chapter describes the uncertainty and the decision making using the
Bayesian approach, where the uncertainty is interpreted in the same man-
ner as randomness. The decision making is described using the probability
formalism firstly in a general form, and then it is applied to particular de-
cision tasks used in the controller design. Finally, the system identification
is described using the exponential family [?] and ARX model.

2.1 Uncertainty and Decision Making in Con-
troller Design

This section gives motivation for use of the Bayesian approach for the con-
troller design. It briefly sketches the tasks of system identification and con-
troller design by utilizing the decision making under uncertainty.

2.1.1 Uncertainty of System Model

The system is identified using a parameterized model. The model considers
uncertainty, which is caused by the natural signal disturbances of the system
and by the fact that we do not know the parameters of the model exactly.
The only knowledge about the system is brought by the measured data and
some prior information. These information sources do not lead to an exact
estimate of the model parameters values. Let us consider a point estimate
of the model parameters obtained from data measured at one time interval
and a second estimate using data measured from another time interval. The
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estimated model parameters will be almost surely different. This behavior
is caused by the incomplete information contained in the measured data.
The other set of data includes different driving signals or different system
disturbance which emphasize slightly different properties of the identified
system.

To cope with this uncertainty, we are identifying not just the point esti-
mate but the whole probability distribution of the parameters that expresses
the uncertainty. This approach acquires more complete, or more fair, infor-
mation about the model parameters from the data.

Of course, the real system can change its properties, too. This is the
uncertainty caused not only by the actual identification data sample, but by
the reality itself.

2.1.2 Controller as a Decision Maker under Uncertainty

A controller is designed to drive the system by generating a suitable ac-
tion signal in order to achieve the desired closed loop behavior. The only
connection to the reality available is through the identified uncertain model
described in the previous section. In fact, the controller is designed to con-
trol the identified model.

The act of the action generation is, in other words, an act of decision
making under uncertainty. Because of the dynamic system model, it is the
dynamic decision making task, which is a computationally hard problem.
Therefore the suboptimal approach is chosen.

The tuning combines the available controller with limited capabilities
and tunes its performance according to the specified aims.

2.2 Bayesian Decision Making

The Bayesian theory of the decision making under uncertainty is an advan-
tageous tool for the controller design. The theory is based on two points.
Firstly, it uses probability to describe unknown or partially known reality.
Secondly, the loss function serves to judge the possible decision acts accord-
ing to its, of course uncertain, consequences. The decision with smallest
expected loss function is chosen as the optimal one.

This chapter describes briefly the parts of the Bayesian theory that are
needed for this work. For more details on this topic see [?].

In the Bayesian theory the concept of uncertainty coincides with the
concept of randomness. This holds for the case where it is a matter of a
real randomness, such as random disturbance, as well as for the case where
it is just something unknown, such as a parameter, which is known to be
constant but its value is unknown to us.

This concept of uncertainty relates to the interpretation of probability
[?]. In the Bayesian theory, probability is not interpreted in terms of relative
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frequencies but more generally as a subjective degree of belief of a rationally
and consistently reasoning person which is used to describe quantitatively
the considered uncertainty.

The connection of the uncertainty, as a subjective belief, with the reality
is done by transforming the uncertainty according to measured data. It is
brought into effect by using conditional probability and Bayes’ rule which
is described later.

2.2.1 Notation and Properties of Probability

In this section, the notation and basic properties of the probability calculus
are given with remarks about its relation to the uncertainty.

Notation:

Quantity is a mapping with a numerical range, i.e. a subset of the multi-
variate, real-valued space.
The domain and form of the quantity are mostly unused and unspec-
ified. The introduced notion corresponds with random variable used
in the probability theory. The use of the alternative term should stress
that the probability serves us as a tool adopted for the decision mak-
ing under uncertainty. The term quantity stresses our orientation on
numerical values that arise mostly by observing physical quantities.

Realization is a value of the quantity.
The random quantity and its realization are not distinguished, as
usual. The proper meaning is determined by context.

Domain a* denotes the set of possible values of the quantity a.
Dimension & denotes the number of elements of vector a.

Probability (density) function Symbol f is reserved both for probabil-
ity functions (pf) of discrete quantities and probability density func-
tions (pdf) of quantities of continuous type. The meaning of the p(d)f
is given through the identifier of its argument. Implicitly all the gen-
eral relations are defined for the quantities of the continuous type. One
has only to keep in mind that the integration has to be replaced by
regular summation whenever the argument is discrete.

Conditional pdf f(f|a,~) of § conditioned by «, is a pdf on §* restrict-
ing f(Q) on the cross-section of Q* given by a fixed «, . The following
random variables are used Q = («a, 3,7).

The conditioning symbol | is dropped if just trivial conditions are
considered.
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Joint pdf f(a,|y) of @, 3 conditioned on 7 is a pdf on (a, 3)" restricting
f(Q) on the cross-section of Q* given by a fixed ~.

Marginal pdf f(a|y) of a conditioned on + is a pdf on o* restricting f(Q)
on the cross-section of §* given by a fixed v with no information on g.

Probability P{a € A} denotes probability of a quantity a being inside a
set A C a*. It holds P{a € A} = [, f(a)dov.

Expectation of function Z(«a, 3,7) under the condition ~y

ElZ(a 6,7) / Z(ov, B, f (e, Bly)dads (2.1)

Calculus with pdfs:

Our manipulations with the introduced pdfs rely on the following calculus.
For generic random quantities «, 3,y it holds:

Non-negativity  f(«,8]7), f(a|8,7), f(Bla,7y), f(Bly) > 0.

Normalization [ f(a, B|y)dadB = [ f(a|B,7)da = [ f(Bla,v)dS =
1.

Chain rule fla, Bly) = falB, ) f(Bly) = f(Ble,v) f(aly)-
Marginalization f(3|y) = [ f(«,8]y)de, flaly) = [ f(o, Bly) dB.

Bayes’ rule

FladB Bl flBy)fBly)
flalv) [ f(alB,7)f(Bly) dB

falB, ) f(B).

(2.2)
The proportion sign o< means that the factor independent of § and
uniquely determined by the normalization is not explicitly written in
the equality presented.

f(ﬂ’a77) =

Independence equivalents

fla, Bly) = fFlal) f(Blr) < flalB,~) = flaly) or f(Bla,v) = f(ﬁlv() )
2.3

2.3 Basic Tasks

The Bayesian decision making is presented in this section in general form.
The modeled world is divided into several parts representing known, un-
known, measurable, and action quantities. These quantities are used to
show the base of the decision making and learning.

Let us divide the modeled world into the following generally multivariate
quantities
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experience P represents the quantities whose values are known and are
available to the decision maker. The experience P contains usually
the data already measured in the time of the decision making.

action A represents the quantity available for the decision maker to express
his decision. It is under full control of the decision maker.

ignorance F represents quantities unknown to the decision maker at the
time of selecting of the action. Their uncertainty is influenced by the
selected action.

innovation B represents a part of ignorance directly measurable after an
action is applied.

behavior Q* consists of all possible realizations (of trajectories) Q, i.e.
values of all the quantities within the time span determined by the
horizon of interest that are related to the system and considered by
the decision maker.

The realization Q can be split with respect to any decision A € A* into
the relevant experience P and ignorance &, formally Q = (P, A, F).

The specific meaning of these quantities for particular purposes is given
later on.

2.3.1 Decision Making

This section concerns the problem of decision making as developing of a
causal decision rule R : P* — A* selecting a proper action A using the
experience P according to the given criterion.
The relationship between F, A, and P is described by their join pdf or
the pdf on the behavior
f(sta‘A’T) = f(Q)
To judge the consequences, a criterion selecting the optimal decision is

represented by a loss function assigning a numerical value to every possible
system behavior Q = (F, A, P)

Z:9"— R (2.4)
The optimal decision rule minimizes the expected loss value
R= in E[Z(F,A,7P). 2.5
arg  min E[Z(J, A, P)] (2.5)
It is possible to construct the decision rule value-wise [?] so that for every

PePr
R(P) = arg min F[Z(F, A, P)|A, P]. (2.6)
AecA*

Here we assume the uniqueness and existence of the minimum. If there are
more absolutely minimizing arguments, then it gives no preferences. It is
possible to use for example a randomized strategy [?].
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2.3.2 Learning

For the decision making, a model describing the dependency of the innova-
tion B as a consequence of the performed action A and the past P

f(BlA, ) 2.7)

is needed for calculation of the expected value in (2.6). The task of Bayesian
learning is to identify the outer model using prior information and measured
data.

To describe the unknown outer model, a set of possible models of the
reality is used. The models in this class are parameterized by a parameter

o
F(B|A,P,0). (2.8)

The parameter © is an unknown, never observed, quantity. It is a part of the
ignorance F. The learning updates the prior knowledge about the parameter
© by incorporating the performed action and the measured consequence.

It is assumed that there is a prior information available conditioned by
the experience

f(O[P). (2.9)

The outer model (2.7) is obtained by the chain rule
1(814.7) = [ 1814, 2.0) (06,
where we assume the natural conditions of control hold
f(O]P) = f(B]P,A).

The natural conditions of control express the fact that performing an action
without knowing its consequence brings no information about the model
parameters.

The task of the identification uses the performed action A and innovation
B (measured data) to update information about the parameter ©.

Posterior information about parameter O, conditioned by the action A
and the innovation B is calculated using the Bayes’ rule from the param-
eterized model (2.8), prior information (2.9), and the outer model (2.7) as
the normalizing factor

f(BIA,2.0)/(017)

(2.10)

In this way, the information of the parameter is updated after the action
and the corresponding innovation is available.
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2.3.3 Recursive Case

In the case of dynamic systems, recursive decision making and learning is
usual. Data measured in the previous control step are used to update the
information about parameters O, which is in turn used for action selection
in the next step.

Let us consider a sequence of T' € N successive decision making tasks.
The quantities used forms sequences {A,}I_,, {B,}1_,. The experience
sequence {P;}I_, starts from an empty initial experience Py, which con-
tains no measured data, and corresponding prior pdf f(©|Pg) = f(©). The
successive elements of the sequence accumulate the actions and innovation

Pe =By, Ay, Pl

The strategies used form a sequence {RT}ZZI, such that Ay = Ry(Py).
The learning process follows Section 2.3.2. From the experience P; we

get the conditional pdf of the parameter ©
f(©]P) = f(O|At, Be, Pi—1). (2.11)

This pdf is then used to obtain the updated outer model

F(BolA, Pry) = / F(BolAr, Prr, ©)F(O]P,)dO.

And finally, this pdf is then used for selecting action A; by a strategy
R:. The innovation By, measured after this action is performed, is used for
updated parameter pdf f(O|P.y1), which closes the recursion.

Dynamic Design

The dynamic design is a multiple step ahead control. It is a recursive decision
making task, where the whole sequence of decision rules is constructed in
the time horizon t € {1,2,...,T}.

The optimal strategy can be found by using a stochastic version of
dynamic programming [?]. The optimal causal strategy

{R7: 7 — AfHL

acting on experience P; and minimizing the expected loss function E[Z(Q)]
can be constructed in the following way: For every t = 1,2,...,7T and each
P € Py, it is sufficient to take a minimizing argument A°(P;) in

V(‘.Pt) = min E[V(Tt+1)|ﬂt, :Pt], t= 1, 2, NN ,T (212)
Are Ay

as the decision generated by the t-th rule of the optimal strategy, i.e.
A°(Py) = RY(Py).
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The recursion (2.12) is performed in the backward manner against the
course given by the increasing experience. It starts with

V(Pri1) = E[2(Q)|Prga]. (2.13)

The reached minimum has the value E[V(P)] = minggyr E[Z(Q)].

Adaptation and Forgetting

In Section 2.3.2, the parameter ©® was considered constant. However in re-
ality the properties of the modeled system may change or the working point
where the model was identified is moved. To allow change of the model pa-
rameters, the information accumulation by equation (2.10) is complemented
also by the information forgetting. This is realized by flattening of the pdf
on parameters f(©). This is a heuristic approach of the adaptation. For the
precise formulation of the adaptation using Bayesian filtering see [?].

2.4 Construction Elements

The basic tasks of the Bayesian decision making were introduced in the
previous section 2.3.3 in general form. This section gives an interpretation
of the general decision making for various tasks connected with the real
problems solved in this thesis.

The Bayesian decision making is used here in the three roles. Firstly,
it is the identification of the dynamic system and its control. Second role
is the controller tuning task and the last one concerns the on-line stopping
rule to make the simulations and evaluation fast.

2.4.1 System Description and Identification

The primary object of the controller tuning is the system to be controlled.
Its knowledge, in the form of system model, has to be as precise as possible
to achieve a good controller design.

The quantities of the system (and its model) in time instant ¢ are de-
scribed in the following list and their assignment to the general form of
experience, action, innovation, etc. noted in Section 2.3 is given.

System input denoted by u:, is a quantity available for direct control — it
corresponds to the action A

System output denoted by y:, is a quantity measurable after the input wu;
is applied — it corresponds the innovation B;

Data record denoted by d;, is a quantity containing both the input and
output dy = [y, uy]
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A special notation for the quantity containing all data from the time instant
1 to t is denoted by
a) = {d-}oy (2.14)

— it corresponds to the experience P;.
The class of considered models of the real system is parameterized by
the parameter ©
f(eluz, d(t — 1), ©). (2.15)

The prior information about the model is represented by a prior pdf on
parameters f(©) that is not conditioned by the measured data.

The model is used to perform the parameter identification as described
in Section 2.3.3. The estimated parameter pdf f(O|y:, us, d(t — 1)) is calcu-
lated recursively according to (2.10) with substituted quantities as described
above.

More specific description of the identification for the case of the expo-
nential family models is given in Section 2.5 of this chapter.

2.4.2 Controller

The controller is defined by requirements imposed on the closed loop behav-
ior

Control criterion is a function of the closed loop data — it corresponds to
the loss function Z

Input range available for control u* — it corresponds to the action domain
A*

The controller for the given model is obtained just by substituting the system
inputs and outputs into the general scheme presented in the previous section
and applying the decision making task as described in Section 2.3.1.

The control criterion is parameterized by a quantity ¢ called tuning pa-
rameter. Tuning parameter shapes the controller properties through weights
of particular terms in the criterion. The controller is determined by the se-
lection of the tuning parameter value. Therefore the resulting strategy R;
is parameterized by the tuning parameter

Re: (d(t—1)",q%) — uj. (2.16)

The example LQG controller and its criterion with the tuning parameter
specified is described in Section 4.

2.4.3 Controller Tuning

The controller tuning is a task of searching for such a controller, or its tuning
parameters that satisfy the specified requirements best.
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The tuning can be interpreted again as a decision making task, where
the searched tuning parameters represent the action to be made, the con-
sequence are the resulting closed loop data, and the loss function describes
the user’s requirements. The tuning as the main purpose of this work is
described in Section 3.

2.4.4 On-Line Stopping Rule

The controller tuning minimizes the loss function defined on closed loop
data. As the minimization is done numerically, the data are obtained from
simulation, which is run many times until the optimum is found, thus there
are big computational demands. The need of making the controller design
computationally efficient leads to the following question: How long has the
simulation be in order to obtain enough information for judging the con-
troller quality?

This task is solved by an on-line stopping rule that triggers the simulation
stop when there is enough information collected. The decision is made for
for the noise compensation task in Section 3.5.2 using the Bayesian decision
making approach.

2.5 System Model

In this section, we describe the types of models used for the identified system
as sketched in Section 2.4.1. First the general dynamic model from expo-
nential family is given, and then the ARX model as a particular member
of the family. Note that some other models are used in this work, too, but
they are defined at the respective sections where they are needed.

Now, some notation needed for the following text is presented. State
is a vector containing a finite number 0 of past data

ror / / / /
Pt = [ytv U Yp—15Ug—15 -+ - Yp—0+1> Ut—5+1> 1] )

which holds sufficient past information for generating next system output
Yi+1, provided the actual input u;y; is available. The last element of the
state is the constant unit which is used to simplify the notation for the case
of the constant offset being present in the model. To complete the notation
the regression vector p; and data vector W; are introduced

’or / / / /

v, = [ytvutvyt—but—l?'"7yt787ut7871]
’or / / / /

Y = [ut7yt—1aut—1ﬂ'"vytf&uth? 1]
Y. /R VY]

Ve = [yl = [y wp, 0]
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2.5.1 Exponential Family

A system model pdf (2.15) belongs to the exponential family if it can be
written in the form

felug, d(t — 1), ©) = f(yelvr, ©) = A(O) exp(tr(B'(¥¢)C(0))),  (2.17)

where A is a non-negative real function on ©*, and B and C' are multivariate
functions with compatible dimensions defined on ©* and ¥}.
The corresponding conjugated pdf of © [?] is

A" () exp(tr(V/C(0))) f(O)

d(t)) = = 2.1
f(Old(1)) = f(©1V;, 1) b SENCAtY
where I(V;,14) is normalizing factor

IViin) = [ 4%(8) exp(tx(V/C(0))) £(©)d0
and V; and 14 are sufficient statistics updated recursively
(‘/t—lu Vi—1, \Ijt) — (‘/ta Vt) (219)
Vi = Viaa+ B(¥y)
Vg = Vg1 -+ 1.

The symbol —, in this context, denotes existence of such a function that
maps variable on the left side to the variable on the right side. The recursion
(2.19) starts from Vj and vy determining the prior conjugated pdf f(O), see

[7].
The predictive pdf of the system can be obtained from (2.17) and (2.18)

by applying (2.11)

f(elue, d(t — 1)) = fyelbe, Vicr, ve-1) = 7 I(Vi, vt)

W) %20

2.6 Gaussian ARX model

An important type of dynamic model from the exponential family is the
Gaussian ARX model. This model with parameter © consisting of regression
coefficients § and Gaussian noise covariance R has pdf (2.17) realized in the
form

f(thtv @) = f(?/tWt, 0, R) ~ N(th,R), (2-21)

where © = (A, R) and 6 € R¥9%! and R € R¥Y. The relationship to the
exponential family (2.17) is given by functions A, B, and C":

B(¥;) = W,
R I e
[T
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The random variable © from pdf (2.18) has now conjugated Gauss-
inverse-Wishart distribution [?]

£(6, R|V;, ) :at]R|_y2texp{—;tr <R—1 [ *QI }Vt [ *01 D} (2.22)

where o4 is the normalizing constant.
The system output y; from the single step ahead predictive pdf (2.20)
has now the Student’s distribution
KRt

Fyeltoe, Viea,ve1) = — (2.23)
&AL ey 2

&=y — 0,1 (2.24)

and k¢ is the normalizing constant. Variables ét, A¢, and (; are obtained
from the split

where

V, V!
Vi = [ vt Typt ] , with y-dimensional square V, ; (2.25)
Vopt Vi

and
0, = ijtl Vit

A = Vo=V b

Go= YV,

The Student’s distribution (2.23) with the number of degrees of freedom
going to infinity converges to the Gaussian distribution

F@elvoe, Vier, vimr) 722N (921% V1+CtloAt_1> (2.26)
t—1 —
and in simulations it is reasonable to sample this approximation instead.
The matrix V; can be decomposed V; = Ly DyL; [?], where L, is a lower
triangular matrix with unit diagonal and Dy is diagonal matrix with positive
diagonal entries. This is advantageous because of better numerical stability,
see [?]. Here it is noted only because a split of these matrices is referred in
Section 3.5.4. The split is defined by conjugated

Lyt 0
L — Y,
' [Lyw,t Lw,t]
_ Dy,t 0
b= [ % 0] oo

where the dimensions of blocks are the same as in (2.25).
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Chapter 3

Controller Design Problem
Formulation and Solution

This chapter covers the controller design beginning with the description of
the task of controller tuning under uncertainty. Then the tuning is defined
formally as a Bayesian decision making task with particular loss function
proposed for specific situations. The rest of this chapter deals with the
computational aspects of the tuning.

3.1 Description of Controller Tuning

Controller tuning is an off-line process aiming at correct controller set-up to
fulfill given requirements and constraints. The controller is parameterized by
so called tuning parameter, which is usually multidimensional. The tuning
parameter has to be set properly to obtain desired control loop behavior.

The controller tuning transforms the user’s requirements into the proper
tuning parameter values

user’s requirements — tuning parameter values
The task of the tuning is to solve the following two problems:

1. Incompatible user’s requirements and tuning parameter — The user’s
requirements are considered to be expressed in a human understand-
able form, while the tuning parameter has its form determined by
the selected class of controllers. The translation from the user’s re-
quirements to the tuning parameter can be very difficult for complex
controller.

2. Incompatible identified and controlled model — A model obtained from
the Bayesian identification is usually more general than the type of
model acceptable for the selected class of controllers. Thus even if the
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user’s requirements were compatible with the tuning parameter, the
resulting properties could not be guaranteed.

In the current situation, the tuning for model based controllers is usu-
ally performed manually using experience of a control engineer expert who
is familiar with the controlled system and controller type. The difficulty of
the manual tuning is raised in the case of multivariate controllers, where
the number of tuning parameters increases. Because of possible mutual de-
pendency of the effects of these parameters, the result of the manual tuning
in this case can hardly reach the optimality. The properties of controller
tuning we are dealing with are described in the following sections.

3.1.1 User’s Requirements

The tuning is aiming at fulfillment of the requirements given by the user.
They are divided in two kinds. First kind of requirement represents the
constraints imposed on the system input generated by the controller. The
typical form of this constraint is a bounding interval imposed on the input
magnitude or its increments.

If there are more controllers that satisfy the constraints, we want to
choose the best of them. Therefore the second kind of requirement is to
minimize some loss function measuring the controller behavior such as the
output error with respect to the prescribed reference setpoint.

3.1.2 Tuning Parameters

The tuning parameters influence the behavior of the considered controller,
but in rather complicated way for the user. This situation is caused by the
controller construction. The control strategy has to be necessarily calculated
on-line for the feedback controller, so it has to be possible to evaluate it fast.
The control criterion employing the tuning parameter and the system model
have to be in a suitable form to make possible efficient computation, such
as the linear model and a the quadratic criterion for the LQG controller.
However the suitable form of the controller for computation need not be
parametrized by suitable tuning parameters from the user’s point of view.

3.1.3 Controlled Model Uncertainty

The controller tuning has to consider the uncertainty contained in the con-
trolled system model. The system model is uncertain from the two reasons.

e the model is influenced by random disturbances of the state and signals

e the model parameters are uncertain
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The first kind of uncertainty models the natural disturbances present in
the system and also the measurement noise.

The second kind of uncertainty is not a random disturbance but it rep-
resents the fact the parameters are unknown, as the Bayesian statistics can
only transform prior information about the model parameters into the pos-
terior one rectified by the measured data. Thus the model parameters are
uncertain and described by a pdf.

The selected type of model based controller can deal with only a specific
type of model. Since it must be possible to evaluate the controller action fast,
as described in Section 3.1.2, the possible model is the linear one with known
parameters. Classical approach is to use point estimates of parameters for
the controller model. However the approach used in this thesis is a different
one. It uses for tuning the whole information obtained by identification in
the form of pdf of the model parameters. Thus, the resulting controller is
tuned to work well not only with the most likely parameters, but ensuring
the proper operation over the whole parameters range with respect to their
probability.

Even more interesting utilization of the uncertain knowledge of the model
parameters is possible for the case of adaptive controller design. The adap-
tive controller uses its own internal model, whose parameters are the point
estimates updated in order to reflect the varying real controlled system, see
Section 3.3.2 and Figure 3.2. The controller performance is evaluated in
the closed loop connected to the identified model with uncertain parame-
ters. This model samples its parameters during the simulation. Thus the
adaptiveness of the designed controller is exercised in an environment close
to the class of probable real systems. Utilizing the uncertainty in this way
gives to the automated controller design a new ability to find an adaptive
controller with the predicted behavior close to the implementation on the
real system.

3.1.4 Constraints under Uncertainty

Because of the fact that the signals and parameters are uncertain, the prob-
lem of perfect constraint satisfaction by the simulated signals is difficult
to be assured. The pdfs of uncertain quantities have usually infinite sup-
ports. Therefore the constraints are redefined to be satisfied at least with a
specified, high enough, probability.

Now, what happens if a constraint is in some time instant exceeded?
From the user’s viewpoint, the constraints can be divided into two groups.
First group contains the constraints enforced by the physical composition
of the system. These constraints are called hard and they have to be met
at all costs. If a violation occurs, the signal is cut to fit into the bounds.
However this cutting can negatively influence the model based controller
prediction and the whole control quality. Nevertheless, as the tuning finds
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a controller that satisfies the constraints with a high probability, the signal
corrections are rare and can be included into the unmeasurable disturbance
of the closed loop system.

The second group of constraints, called soft, is used artificially by the
user to specify his objectives in a convenient form. These constraints are
not required by the system and violating them in a small allowed probability
has a negligible negative effect on the control loop, so they are not cut to fit
into the bounds.

3.2 Tuning as a Bayesian Decision Task

This section describes the controller tuning as a Bayesian decision making
task as defined in Section 2.3 and applied for the particular case of the
closed loop, user-defined constraints, controller quality and tuning parame-
ters. The particular construction elements are described in terms of experi-
ence, action, innovation and decision making. First of all let us present the
tuned closed loop.

model
fy| u, d(t-1))

controller
<_
f(u] d(t-1),q) |e—q

Figure 3.1: Closed loop.

The classical interconnection between controlled system and controller,
see Figure 3.1, generates closed loop data d(T'), see (2.14), of length T.
The data collect the input u; driven by the controller and the output y;
measured on the controlled system as described in Section 2.4.1. The closed
loop forms a stochastic system as the controlled model is considered to be
influenced by a random disturbance. Thus the model behavior is described
by pdf f(yi|us, d(t — 1)). The controller is described generally as a random
one by pdf f(u|d(t — 1),q), where ¢ denotes the tuning parameter. The
closed loop data d(T") are therefore also a random variable described by pdf
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obtained by application of the chain rule over the horizon T’

T

F(T)q) = [T £(yelue, d(t — 1)) f (ueld(t — 1), q). (3.1)

t=1

3.2.1 Experience

Experience as described in Section 2.3 contains known quantities. In case
of controller tuning it represents the measured data used for model identi-
fication. As this work is not about the system identification, the measured
data are not written explicitly. They are used to obtain a model of the con-
trolled system f(y¢|us, d(t — 1)) or in another words the pdf of its identified
parameters f(©).

3.2.2 Action

The action in case of controller tuning is represented by the particular values
of tuning parameter g. The tuning parameter defines the behavior of the
controller f(ud(t — 1),q) and hence it influences the closed loop. The
particular meaning of tuning parameters depends on selected controller, for
LQG controller see Chapter 4.

3.2.3 Innovation

The innovation as a quantity measurable after an action is performed is
represented by the closed loop data d(7T') using controller with particular
tuning parameter values. The data measured are in fact a sample of their
respective pdf (3.1).

3.2.4 Decision Making

For the purpose of controller tuning, the user’s requirements imposed on the
desired closed loop behavior are represented by a pair of so called controller
quality functions Z, and Z, defined on the closed loop data d(7"). The first
function Z. represents the constraints imposed on the data. It is a mapping

Z.:d(T)* — R, (3.2)

where ¢ denotes the number of independent constraints. The constraints are
considered being met if the expected value of function Z. is non-positive.
The second function Z, is a mapping

Z,:d(T)" — R. (3.3)

It represents a loss function which is decreasing with increasing controller
performance with respect to the output error.
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The aim of the tuning as finding such a tuning parameter value that
satisfies the constraints while maximizes the performance is stated as the
following optimization task

minimize  E[Z,|q]
subject to  E[Z:|q] <0 (3.4)

over the tuning parameters q.

This task corresponds to the Bayesian decision making ¢ = R(P) as de-
scribed by (2.6) in Section 2.3

= in F . .
R(P) = arg min, BT, A, P)|4,7) (3.5)

with the following assignment

e action A is represented by the searched tuning parameters ¢

domain of action A* contains all possible actions that satisfy the con-
straints A* = {q : FE[Z.|q] <0}

loss function Z is represented by the function Z,

e innovation B is represented by the resulting closed loop data d(7T")

experience P contains identification data and it is not written explic-
itly.

The controller tuning is a static decision task. There is only one
time-independent action—the tuning parameters ¢ and one innovation—
the closed loop data d(T'). The static decision task is much simpler than the
dynamic one described in Section 2.3.3. Thus it can be computed numer-
ically off-line, without strict limitations imposed on the complexity of the
model and loss function.

3.3 Construction of Closed Loop

The data pdf f(d(T")|q) is generated by the controller and system model pdf
(3.1). Now, these two components are investigated.

3.3.1 System Model

The system model is not known exactly, it is identified from the real
data measurement, see Section 2.4.1. The assumed system model is
f(yt|ug,d(t —1),0). The parameters © are obtained from the identifica-
tion in the form of pdf f(©). In fact the pdf on © is conditioned by the
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measured data but this conditioning is omitted here to avoid confusion with
the closed loop data.

The system model respecting the uncertainty of parameters is obtained
by the chain rule (2.11)

F (s, d(t — 1)) = / f (e, d(t — 1), 0) f(©)dO. (3.6)

The retained uncertainty allows to model more realistic closed loop data
behavior than it would be possible with point estimates.

The system model used in this thesis is the ARX model, see Section 2.6.
The corresponding pdf f(y:|us, d(t—1)) represents the Student’s distribution
(2.26).

3.3.2 Adaptive Controller

The complexity of the controller depends on the type of controller selected,
generally when considering model based controllers the complexity is high
and the controller pdf

fugld(t —1), ) (3.7)

cannot be obtained in a closed form. Most of known controllers are deter-
ministic ones, with the pdf being the Dirac delta function. The notion of
pdf is used because it fits to the Bayesian approach and also a stochastic
controller derived by fully probabilistic design [?] exists and it is closely
related to the deterministic LQG controller.

The tuning described in this thesis is mainly focused on the adaptive
LQG controller. The adaptive controller can be decomposed into a model
estimator and a non-adaptive LQG controller, see Figure 3.2.

adaptive LQG controller  f(u/d(t-1), q)

estimator

f(®,[d(t-1))

u Y y
point estimate =

C)

A

v

non-adapt. LQG
f(u| d(t-1), q, ©,)

A

A A
Na

Figure 3.2: Adaptive LQG controller.
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The model estimator for the ARX model f(©4|d(t — 1)) used within
the adaptive controller has the form of Gauss-inverse-Wishart distribution
(2.22). The subscript A in ©4 is used to distinguish it from the system
model parameter estimated from the real measured data.

The non-adaptive LQG controller f(u:|d(t—1),© 4) is derived for known,
not uncertain, model parameters. It follows the Bayesian dynamic design,
Section 2.3.3, by optimizing the expected value of quadratic criterion defined
on specified horizon of the closed loop data. It’s calculation can be done
only numerically by solving the Riccati equation [?]. For more details see
Chapter 4.

Due to the fact the non-adaptive LQG controller is derived for the known
parameters only, the estimated parameters pdf f(©|d(t — 1)) is approxi-
mated by the Dirac delta function obtaining the maximum likelihood esti-
mate © A-

3.3.3 Monte Carlo Approach

The apparent complexity of the adaptive LQG controller disallows analyti-
cal derivation of the closed-loop data pdf f(d(T")|q), which is necessary for
calculation of the expected values E[Z,|q] and E[Z.|q|. Therefore the opti-
mization task (3.4) must be solved numerically Monte-Carlo. The numerical
solution is composed of these three main nested evaluation loops:

A Numerical optimization of the tuning parameter ¢

B Estimation of the expected values E|[Z,|q] and E[Z.|q]

C Simulation loop generating data samples from f(d(7T)|q) us-
ing the uncertain system model and the adaptive controller

The inner most loop C samples the distribution given by f(d(T)|q) by
performing a simulation of length T of the closed loop, Figure 3.1, for each
sample. The uncertainty contained in the identified model parameters f(©)
is used for the reasonable simulation of the adaptive controller, whose inner
estimate of the parameters © 4 is being adapted to the varying parameters
O of the simulated system model. This approach allows to tune the adaptive
controller off-line using the estimated model from the measured data.

The loop B estimates the expected values E[Z,|q] and E[Z.|q] from
closed-loop data samples d(7") obtained by repetitive invocation of the sim-
ulation loop C with controller tuning parameter set to the value of q. The
data samples {d(T);}, are transformed by the deterministic function of
data Z,(d(T)) and Z.(d(T)) and the sample mean is used as the estimate
of the searched expected values E[Z,|q] and E[Z.|q].

The outer most loop A is an optimization method solving the tuning task
(3.4). A numerical method is used. It invokes the loop B for every guess of
the possible tuning parameter until it reaches the solution if it exists.
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The combination of the three nested loop implies high demands on the
computation time of the tuning algorithm. Therefore on-line stopping rules
were proposed for the loops B and C to reduce the number of iterations while
conserving given precision of the expected value estimation, see Section 3.5.2.

3.3.4 Comparison with the Former Approach

The proposal of the loops configuration given in the previous section gives
several advantages in compare to the former approach of the controller tun-
ing.

The controller tuning presented in [12] uses a different approach for the
numerical evaluation. The algorithm is based on the following loop config-
uration

A Sampling of model parameters © and accumulating the particular op-
timal tuning parameters ¢

B Numerical optimization of the tuning parameter ¢ for given ©

C Loss function expected value is estimated. Simulation gen-
erating data sample from f(d(7")|q) using the fixed known O
for model as well as for the controller, which is non-adaptive.

Note the loops A and B are swapped in contrast to the approach used in this
thesis as described in Section 3.3.3. The sampling of © is in current algo-
rithm done implicitly during simulating directly from the uncertain system
(3.6).

The result of this algorithm is a set of samples of the optimal tuning
parameters pdf f(q). The resulting single value from this set is chosen in
order to assure the constraints be satisfied for given percentage of the sam-
ples. The tuning parameter in this approach is only single-dimensional. It
assumes monotonous dependency of the constraint function on the tuning
parameter, which is decreasing with increasing tuning parameter value, and
also monotonous dependency of the loss function, which is increasing. Thus
the optimal tuning parameter can be uniquely chosen by taking appropri-
ate quantil of the approximated pdf f(q) assuring desired probability of
constraint satisfaction.

Approach presented in this thesis removes limitations of single-
dimensional tuning parameter and single constraint. Even more, for noise
compensation ergodic process, the loop performing multiple simulations can
be removed and only one long enough simulation run is performed, see Sec-
tion 3.5.2.
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3.4 Closed Loop Performance Evaluation

In this section, requirements and constraints imposed on the ideal closed loop
behavior are defined. Their fulfillment is measured by the controller quality
functions Z, and Z.. The construction of these functions is described.

3.4.1 Loss Function

The control objective expresses commonly the aim assigned to the quality
of the regulation process, which should be in a certain sense as good as
possible subject to the present constraints, as introduced in Section 3.1.1.
The typical wish on the small output error and the control effort of inputs
is expressed by the objective function Z,
1 X
Zo= 7 > (dr = &YW (dr — &), (3.8)

=1

where the desired signal setpoints are described by the reference trajectory
{d*}T_, and a positive semi-definite matrix W of appropriate dimensions.

The matrix W is usually diagonal with only those elements being non-
zero which correspond to signals in the data record d; with an important
prescribed reference trajectory or setpoint in dief. The particular values
define the cost of particular signal output error.

The elements of matrix W are user’s choice, but they do not substitute
the proposed tuning algorithm of parameters q. The function Z, is of a
secondary importance as the primary goal of tuning is to satisfy the specified
constraint.

A hint for selecting the values of the non-zero elements of W is choice
of reciprocal values to the conditional variances of respective signals in d;
for outputs and zero for inputs. This approach puts more importance on
tracking of the less noisy channels, while the channels with higher conditional
variance take less effort of the controller. The reason is that the variance of
the controlled signal in closed-loop cannot be reduced below the conditional
variance of the signal in the system model. For more details see Section
4.2.2. The diagonal elements of W corresponding to inputs are left zero,
because the inputs are the main concern of the constraint function Z..

3.4.2 Constraints

Constraints are often imposed not only on the magnitudes of input and out-
put quantities but also on their dynamic behavior such as limited increments.
To cope with these constraints uniformly, a vector variable ¢; containing all
constrained dynamic expressions of data quantities is introduced.

A vector ¢ is extracted from data d(¢) by a mapping C

C:d(t)" — RS, Vt=1,...,T. (3.9)
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Using this mapping, the vector ¢; can be obtained for the whole time span
that is denoted by ¢(T) = {c;}._;. The constraints are defined by a set
C C RE of allowed values defining the constraint satisfaction in time t by
c € C.

A common example of independent time invariant constraints is formed
by the cartesian product C = ®f:1 C; of intervals, where ¢ is dimension of
constrained vector ¢;. The intervals C; are defined

C; = (cin, cmax) (3.10)

3 b2

In the most practical tasks, vector ¢; contains magnitudes and increments
of data records. The corresponding function € is

Ct — G(d(t)) = [dt,dt — dt—l]'

The constraint function Z. introduced in (3.2) is now described using
the constraint vectors c¢;.

Z,: ¢(T)* — R, (3.11)

This redefinition does not change the meaning of the function because the
constraint variable ¢(7") is function (3.9) of the data d(T).

Two variants of function Z, for servo control Z,, and noise compensation
Z., tasks are used as described in the rest of this section.

3.4.3 Servo Control Task

The constraint function Z,,, collects information about maximal constraint

violation during the simulation run

Zeygi =  max dist(c; 4, Ci) — dist(c; ¢, comp(Cy)), (3.12)
where comp(C;) is a set complement of Cj, Z,, ; is i-th element of Z,,, and
dist(x, X') denotes a distance between point x and set X. This definition
of function is suitable mainly for transient processes, where the constrained
signals have one or just a few important peaks, such as servo control tasks.
The time T is selected big enough to cover all the instants with significant
signal changes.

3.4.4 Noise Compensation Task

The second function Z., evaluates proportional amount of time where con-
straints are violated over the total length of simulation with some allowed
tolerance, see Section 3.1.4. In the discrete case, it is the relative frequency
of constraint satisfaction

T
1
ZCp,i = Omin — T ;XC}- (Ci,t)7 (313)
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where x¢; is characteristic function of the set C;, and number oy € (0, 1)
relaxes the requirement of constraint satisfaction to a specified level.

This definition is suitable for situations where the constraints can be vio-
lated any time during the simulation. This is the case of noise compensation
control, where the control loop generates an ergodic process. Then it holds

Zepi iy amin — P(¢; € C;)  in probability,

where P(-) denotes probability and ¢; has dropped the time index because
of ergodicity of the process.

3.5 Numerical Evaluation

In this section, a numerical approach to estimation of expected value from
samples is described. The computational complexity is reduced by intro-
ducing stopping rules shortening the simulations.

3.5.1 Expected Value Estimation

The controller tuning, formulated as the optimization task (3.4), acts on

the conditional expectation of the controller quality functions Z. and Z,.

However their pdf is not known in a closed form, because of the complexity

of the dynamic system model (3.6) and adaptive controller (3.7). Thus the

expected value has to be estimated by sampling. To unify the notation in

the following text, let Z, denote all the quality functions distinguished by
w9

the content of the placeholder “o” for “cps”, “cp” or “o”. The expectation
E[Z,|q] is estimated as sample mean

N
ZY(0) = 3 Zesl) =5 BlZd) (3.14)
s=1

Sequence {Za s(q)}Y_; denotes N samples of Z, from f(Za|q).

3.5.2 Number and Length of Simulations

The quantity Z) is evaluated using N independent simulation runs. The
length of each run is determined by 7. Increasing these two numbers N
and T increases precision of the expected value approximation ZY of the
controller quality functions. On the other hand, it also increases the com-
putational demands of the evaluation, thus the lengths have to be limited.
To solve this tradeoff, the on-line stopping rules are employed. First, the
properties of the quality functions with respect to number and length of
simulations are described.

The variance of the quantity ZX is indirectly proportional to the number
of independent simulation runs N, which is clear from its evaluation (3.14).
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The similar situation occurs for length of simulation 7', which has to be
long enough in order to:

1. Contain all important reference trajectory changes.

2. Allow the uncertain parameters to vary in order to simulate the con-
troller adaptiveness.

3. Decrease the variance of the controller quality functions.

The item 1 is straightforward. It is used for transient processes, where
a kind of constraint measure Z,,, is used. Of course, all responses related
to reference trajectory changes have to be included, too.

The situation of items 2 and 3 is more complicated. Both of the items
contribute to the precision of the expected value estimate. Even more, the
item 2 can be substituted by item 3, because if the variance is low, it means
that further parameters changes bring no more information on the controller
quality functions.

Increasing the simulation length T for the ergodic case, such as the
noise compensation, has the same effect as increasing the number N of the
simulations. Thus, one long simulation is sufficient.

The proper values of N and T are decided on-line during simulation using
the Chebyshev inequality and the Kullback-Leibler divergence. The on-line
stopping is advantageous in comparison with the off-line determination of
the length and number of simulations, because it considers the contribution
of the actual data and thus stopping is optimal for the current simulation
unlike for all possible simulation runs as in the case of a priori selected N
and T values.

3.5.3 On-line Stopping Rule for Number of Simulations

The independent simulation runs are connected mainly with non-stationary
servo-control tasks. It is hard to find a reasonable distribution of the quality
functions Z, for different variants of reference trajectory. Thus, a simple
non-parametric stopping rule is used. It is activated when the following
inequality is satisfied

P(|zX —EZ)| > ~) < B, (3.15)

where parameters § and v determine the sensitivity of the stopping.

The stopping is based on variance of Z¥ as shown below. The inde-
pendency of averaged quality functions (3.14) resulting to Z¥ used with
Chebyshev inequality yields

Var(va)‘

P(|zY —EZ)| > ) <
(I | > ) N

(3.16)
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As covariance var(Z)Y) is unknown, its estimate Z N, is used

N

zyo=>" (Z"s)zj:, (ZZV)Q, (3.17)
s=1

where variable Z, ¢ has the same meaning as in (3.14). Then the stopping
is triggered after certain minimal number of simulations is performed and
when the following inequality is satisfied

N

Za,o
Nor <0 (3.18)

3.5.4 On-line Stopping Rule for Simulation Length

A rule for on-line simulation stopping for the noise compensation task is
described here. The function Z, contains a sum (3.8) or (3.13), but the
summed terms are correlated, so the approach using the Chebyshev inequal-
ity from Section 3.5.3 cannot be applied. Let the summed terms (3.23) of
Z, and x¢,(cit) of Z., forming the controller quality functions be called
partial controller quality and be denoted by v;. For the noise compensation
task we assume the closed loop signals be ergodic and thus also the partial
losses are ergodic.
To find a reasonable stopping rule, a simple dynamic model of v

foo(t —1),2). (3.19)

is being estimated in Bayesian way. Let the parameters of the model be
denoted by E. When the estimated pdf f(Z|v(t)) of the model parameters
= stabilizes, the stopping takes place. The stabilization of pdf f(E|v(t))
is measured by the Kullback-Leibler divergence Dxkr, of two successive pdf
estimates [?]. It is defined by

f(Eld(T))
FEIT ))da. (3.20)

When this divergence, labeled Ur, becomes smaller than some threshold
value e

Diw(FEAD)|FEIT ~ 1)) = [ FElaT

Ur = Dxu(f(E[T))|f(E[AT - 1)) <=, (3.21)

the computation is stopped. At this moment 7', the pdf f(Z|d(T)) is consid-
ered to reach the steady state. The stationarity means that more data would
not bring significantly more information for the estimate. The dynamic
model of variable v (3.19) is used just for determination of the stopping
time while the loss function is calculated by its original defining equation
(3.8) or (3.13). This approach was mentioned in [?].
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Yet there is a better opportunity of calculating the loss function value
from the estimated dynamic model of the partial loss v by evaluating its
stationary pdf. This approach is used in the next paragraph with ARX
model. It is shown that f(Z|d(T)) is stabilizing as f(Z|d(T)) is stabilizing.
In other words the divergence

Drr(f(2]d(T))|[f(2]d(T - 1))) (3.22)

is decreasing as Dk (f(E|d(T))| f(E|d(T —1))) is decreasing.

The definition of the quantity v, and the construction of the particular
models for the functions Z, and Z,, is described in the following paragraphs
using ARX and Markov chain models. The stopping rule for whole simula-
tion is triggered when the conditions for both loss and constraint function
stopping are activated.

Approximation by ARX Model

This section describes a suitable model type (3.19) of the partial quality
v; used for determination of the stopping time when evaluating the loss
function Z,. The quantity v; for the function Z, as the summed term in
(3.8) is the weighted distance between the data variable d; and its referential

value di°f in time t

v = (dy — 5N W (dy — &5°F). (3.23)

For purpose of stopping quite a rude dynamic approximation of v; by a
simple autonomous ARX model is used.

vp=avi—1+k+e, e ~NO,R). (3.24)

The parameters a, k, and R are collected into the variable Z, where [a, k] =
g, R=ZEpr and 2 = [Ey, ZR].

The Bayesian identification of the parameters = leads to the self repro-
ducing Gauss-inverse-Wishart prior/posterior pdf

fE(t) = f(Z0, Er|Vi, i) = (3.25)

v 1 — ! —
N N I E)

where «; is a normalizing constant. Statistics v and V; and parameter
elements Zy and Zg written only as # and R without = are described in
Section 2.5.

The stationarity measure for the Z, function denoted by U,.;, by means
of the Kullback-Leibler divergence of two successive estimated pdfs of =, has
the form [?]

F(v) + G(G) + H (v, 01, Gt)
? (3.26)

Uot = Du(f(Elv@)IIf(Elo(t — 1)) =
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where

Fln) = 2ln<F(Vt2_1)>—2ln<r(’;t))+8mgé?)>

_ Gt
G(G) = W(+¢) - e
_ &
o Dyt—1(1+G)
H(v,06,¢) = (v —1)In(14 o) — Vo

(I+o)(1+G)

The quantities (;, é;, and D, ;1 are defined in Section 2.6.

When the divergence U,.r is less than threshold ¢ in time 7' then it is
assumed that enough information has been collected and the loss function
Z, (3.8) is precise enough.

Loss Evaluation from Dynamic Model It is possible to evaluate the
mean value of loss function Z, directly from the dynamic stopping model
of vy (3.19) instead of its original definition (3.8), were the stabilization
property of EZ, is implied by stabilization of the dynamic model parameters.

This is obtained by transforming the dynamic model (3.19) into a static
one. First, the transformation for deterministic parameters Z is given and
then the distribution of uncertain ones is transformed.

Suppose now that the parameters a, k, R of dynamic model (3.19) are
known and stable, |a| < 1, then the corresponding static model is given by
pdf

v = N(p, q), (3.27)

where parameters p, ¢ are given by

k
— 3.28
p T a (3.28)
R
= 2
q a2 (3.29)

The new parameter p is a suitable estimate of Z,, as Z, = % Zthl v¢. Thus
p=FEv =EZ,

where the = sign means approximately equal as the stopping model (3.24)
is just an approximation.

If the model (3.19) is unstable, |a| > 1, the loss Z, is infinity.

Now we drop the assumption of certain parameters. As the model (3.19)
is estimated in Bayesian way, its parameters are uncertain. Thus parameters
p and ¢ of the static model (3.27) are uncertain, too. The estimate of Z, is
therefore selected as expected value of p

EZ,= Ep (3.30)
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The pdf of p is obtained by transforming quantities k£, a and R according
o0 (3.28). Unfortunately, the posterior pdf of parameters Z is Gauss-inverse-
Wishart and it has infinite support for parameter =, = a. Situation when
la| > 1 and the estimated model (3.24) is unstable has non-zero probability.
This conforms to the reality where a system model with uncertain parame-
ters connected in closed loop can be with some probability unstabilizable.

As this situation is generally unavoidable, we have to accept that the
stopping model (3.24) is unstable with some low probability P(Ja] > 1).
However this makes the estimate of FZ, infinite. When evaluating the Z,
directly from simulation by (3.8) and the closed loop shows to be unstable,
the estimated model is rejected by the tuning algorithm. Thus the results
are limited to the stabilizable models only. So when we approximate the
EZ, from stable stopping models only |a| < 1 we obtain the same result.
Therefore we may restrict the transformation (3.28) to |a| < 1.

Stopping properties of transformed quantity The stopping property
with respect to the Kullback-Leibler divergence of parameter pdf f(Z) (3.21)
implies the same property for transformed quantity p, which is used to esti-
mate EZ, (3.30).

Drr(f(pld(T)I[f (pld(T = 1)) < Drr(fEIAT)IS(EIAT - 1)) <€

This can be proven by writing the transformation (3.28) restricted on |a| < 1,
lets denote it GG, as a composition G = S o H of regular transformation
H:p= %, k = k and projection S selecting only element p from result
of S.

The Kullback-Leibler divergence remains unchanged when transforming
the quantity by a regular transformation. Let f(z) and g(z) be pdfs on quan-
tity x. Transformed quantity y = H(z) has pdf f(y) = f(H " (y))|Jg-1(v)|
and similarly for pdf g. Then it holds

Drce (F )3y /f ()L dy =

/ fa dx — D, (F(2) l9(x)).

The projection transformation decreases the value of the Kullback-
Leibler divergence

Dxr(f(a)llg(a)) < Dkr(f(a,b)[lg(a,b)) (3.31)

This is proven by

Dkr(f(a,b)llg(a,b))

//fab )dadb—
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v [y FO@F@
= [ @ [ st LG v

L F@ [ )
- /f( it +/f< )/f(b\ )ind e dba

= Dxu(f(a)llg(a)) +/f(a)iDKL(f(b!a)\g(bla))da > Dxr(f(a)llg(a))

Approximation of Transformed Expected Value Applying Taylor
series expansion of transformation p = G(Z) in point EZ we obtain

1
p= G(EE)+(E—EE)VG(EE)+§(E—EE)V2G(EE)(E—EE)’+- -+, (3.32)
which is in expected value

1
Ep = EG(Z) = G(EZE) + 5tr(v2(;(E5)cc>vE) SR (3.33)

Using just the first order approximation we obtain

5
Ep =
p 1—-FEa

The expected value Fa should be evaluated from the distribution with
support only on |a| < 1, as described above. Nevertheless, the probability
P(Ja| > 1) is low. So using the expected value from original Gauss-inverse-
Wishart distribution on Z is sufficient. This approximation gives good re-
sults comparing to calculation directly from definition of Z, (3.8) according
to experimental testing.

Markov Chain Estimation

The calculation of the constraint function Z., (3.13) includes an estimate
of constraint satisfaction probability using characteristic function of the al-
lowed set. To determine precision of this estimate, the task is slightly ex-
tended.

Given the i-th element of the constraint quantity c;; from Section 3.4.2
and the corresponding constraining interval C; from (3.10), let {v¢}1_; be a
sequence indicating the relative position of ¢;;; to C;

1 Ciit > CZ
Vit = 0 Cit € C; s (3.34)

where the inequality symbol is understood as it holds for all the elements of
the interval on its right side.
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The dynamic model (3.19) of the discrete variable v;,; is represented by
Markov chain

f(Wiilgizi-1,Z) = Ey,)g,, Where =, 5, > 0 and ZEU”% =1. (3.35)

Vi

The notation of »_ ~ denotes a sum over the whole set of possible values
v}, the analogous situation holds also for the product in the following text.
As the quantity v; is now discrete, the symbol f represents a probability
function now. The quantity g;;—1 contains the past values of v;

Gist—1 = [Vist—1, Vist—2, - - -, Vist—p).

The number 7 denotes the order of the Markov chain. The parameter Z,,,
has 37+! entries. The following derivations are done for single element of vy
only and the element index 7 is omitted for the sake of simplicity.

Using the Bayes’ rule and the conjugated prior on f(Z) defined by the

statistic Vg y|q
A v|g—1
) x H H “vlg

we obtain the posterior pdf of the parameters &

V\gt 1

H IT, v =g
B(V;) 7

where
t

Vv|9§t = Vb,v\g + Z 5(”7 Ut)5(97 gt)

T=1

with §(-,-) being the Kronecker delta and the normalizing factor

H F( v|g t)
B(V) =
1;[ (Zu V;J\g;t)

The stopping rule uses the Kullback-Leibler divergence to determine if
there is collected enough information about the constraint function Z,.,.
The calculation is stopped whenever the divergence of two successive pdfs,
denoted by U, is less or equal to threshold

Uer = D (f(EWD)f(ER(T - 1)) <e. (3.36)

Derivation of this divergence for the Markov chain model is done through
converting it to the Dirichlet model, for which the divergence is analyzed in

[7].
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Parameters Z,, are independent for different past data g. Thus
FEP®) =] f(Eqglo(®)),
g

where the particular factors

(3, Vil o~
f(Eo\g’/U(t)) = I—EUZ]:-—‘U(%;’Z)) El‘)/‘qulg’ !

are distributed by the Dirichlet distribution. In each time step, only one of
these factors is updated—that one with corresponding past data g = g;—1.
The other factors remain unchanged.

As it holds

DirL(fi(x) f ()l f2(x) f(y) = DxL(f(2)| fa(2)),
thus
DiL(fE@®)f(Elv(t=1))) = DkL(f(Zajg, [v() ]| f (Za)g, [v(t=1))) (3.37)

is a divergence of two Dirichlet distributions. Now, the divergence of the two
Dirichlet distributions derived in [?] can be used in (3.37) and the stopping
rule (3.36) then yields

Vvt\gﬁt*l 9
Uc;t = Zv Vv|gt;t—1 " 8V1}t\gt§t ot (szlgt;t) 9 Zv VU|9t;t lnr(zv: Vv‘gt;t).
(3.38)
At the stopping time T', determined by (3.36), a stabilized MC model is
obtained.

For the stopping purposes only first order, n = 1, Markov chain is used.
Its steady state probability P(v; = 0) of state number zero in (3.34) can
be used for obtaining the value of Z.,. The steady state p evaluation for
Markov chain with certain parameters Z requires calculation of vector p such
that Z?Zl p; =1 and Zp = p.

For uncertain = with Dirichlet distribution it is difficult to calculate
the distribution of steady state p. Also another problem arises when using
smooth optimization technique for constraints satisfaction measure evalu-
ated from only finite number of samples, see Section 3.6.2. Thus the Markov
chain is evaluated only for stopping purposes.

Properties of the Stationarity Measures Illustrated on an Example

To show the properties of the stationarity measures U (3.38) and Upy
(3.26) using ARX and MC stopping models, a simple illustrative experiment
is presented. The results can be seen in Figure 3.3. The data used for the
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Figure 3.3: Properties of stationarity measures. The symbols u and y denote
inputs and outputs, U, and U, are the stationarity measures obtained by
Markov chain and logarithm ARX model approximations. U™ is interpola-
tion of U,.. Z. and Z, are controller quality functions of constraint violation
and output error. Horizontal axis represents the time.

evaluation of the loss and constraint functions were generated using the
linear system with transfer function

0.00468 + 0.00438z~1
1—1.812"1+0.817822

which was driven by zero mean white noise with variance one. This model
was obtained by discretization of a simple continuous model with transfer
function

1
(14 s)2
with sampling period 0.1.
The squares of the generated output samples were used as a partial

quality function for the stopping by using ARX model stabilization, see
(3.23) with W = 1. The stationarity measure U,y for the ARX model is
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seen in the second part of the figure and the evolution of the mean value
estimation is in its third part.

The constraining interval [—0.3,0.3] is used on the generated data to
obtain the discrete three-state indicator (3.34) for the purpose of stopping
through the MC model (3.35). The resulting stationarity measure U,,; and
the corresponding estimation of probability of the state zero are shown in
the second and third part of the figure.

It can be seen that the measure U.; is rather fuzzy. This complicates
the decision whether to stop simulation, because the rule to stop whenever
the measure is below the threshold is quite unsatisfactory as the several
next samples immediately increase the value above this threshold. To solve
this problem, an interpolation is performed using the approximation by the
following model

Uéf;t =ag + alt_1/2 + agt_l, (339)

were the coefficients are obtained by linear regression. The interpolated
measure, denoted by Ug}t, is shown in the figure. The interpolation is, up
to a tiny peak close to the origin, satisfactory for the stopping purposes.

It is possible to think about stopping for the interpolating regression,
too, and trigger the stopping when the interpolated measure is below the
threshold as well as the interpolation itself has been stabilized.

The threshold for the measures Uci;r;t and U, need not be of the same
value. The stopping models are different and have a different number of
identified parameters. From the particular example presented in this section

a reasonable threshold for U;?tt is roughly 0.008 and for U, it is 0.004.

3.6 Optimization

The controller tuning as the optimization task (3.4) requires to evaluate
expected values of the controller quality functions. These functions are
data-dependent and the data are random quantities whose distribution is
available through samples only. As the expected value is estimated from a
finite number of samples, it is also a random quantity. The optimization (3.4)
is a stochastic constrained optimization task, which is generally difficult to
solve. From possible approaches to the solution of this kind of optimization
we tried two of them. The stochastic approximation [13] and the sample path
method [11]. We found from the experiments that the sample path method
is much more suitable for this controller tuning in a sense of convergence
speed. We describe it here briefly.

3.6.1 Sample Path Method

Suppose we are solving the controller tuning task for an identified system
model with given quality functions. The values, or more precisely samples,

52



of the quality functions depend on data, which in turn depend on the tun-
ing parameter value and a particular randomness realization used in the
simulation. The expected values of the quality functions are approximated
by sample mean as described in (3.14). Now we rewrite this formula with
different quantities. The length of the simulation 7" is determined by the
stopping rule and so it is not given explicitly. The additional quantity is a
sequence of independent identically distributed quantities £ = {&}f\;l that
covers the randomness used during the i-th simulation run. The rewritten
formula

N
20 =5 Zul0,6) (3.40)
=1

where the quality function va (¢, &) is now deterministic, because everything
random is covered by £. In other words the data d(7T') are a deterministic
function of the tuning parameters ¢ and the randomness &;, thus the quality
function sample defined by Ze(q,&;) = Ze(d(T)), is also deterministic. Note
that the samples of the quality function in (3.14) are the same but with
unspecified randomness.

When the N is going to infinity, the limit Z°(¢) does not depend on
the particular randomness £ any more. This fact is used by the sample
path method, where the random sequence £ is sampled only once at the
beginning of the optimization and then it remains fixed when evaluating
(3.40) for all possible tuning parameter values q. The expected value Zfo(q)
is still approximated by Zﬁv (g,€), where N is high enough to obtain good
approximation of the expected value. The number of samples is obtained by
the stopping rule described in Section 3.5.3. Because of the fixed sequence &
it is possible to use the well developed deterministic optimization methods.
This is advantageous especially for the constrained case that we solve. For
details on properties of the sample path method see [11].

The randomness in the case of controller tuning takes place in the system
model pdf sampling (3.6). A possible form of the randomness ¢ is a sequence
of independent samples of the uniform distribution U(0,1). The pdf (3.6)
conditioned by actual data is then obtained by respective transformation of
particular element of &.

The particular solution of the randomness fixing for the case of ARX
model with uncertain parameters with modeled pdf (2.23) is to us the ap-
proximation using the normal distribution (2.26). The sequence & can be
now based on the normal distribution N(0, 1) which is scaled and shifted to
match the required normal distribution (2.26). An easy way of algorithmic
implementation of the sample path method is to set the state of the pseudo-
random number generator to a predefined value in the beginning of every
simulation.

A deterministic quasi-newtonian optimization method called fmincon
was selected from the Matlab Optimization toolbox [9]. The used optimiza-

53



tion method is a local one and therefore it depends on the starting point.
The choice of the starting point is dependent on the type of controller used
and its tuning parameters. For the LQG controller the approximation of
the searched tuning parameter values that can serve as the starting point is
described in Sections 4.2.1 and 4.2.2.

3.6.2 Constraint Function Smoothing

The selected quasi-newtonian optimization method requires smooth loss and
constraint functions. But it is not always met in the case of numerical
approximation of these functions. This section describes a solution of the
problems caused by non-continuity of the approximated constraint function
Zepi-

A sample of i-th element of random quantity Z., ; (3.13), evaluated from
simulation, obtains only a finite number of discrete values

Zepi € {Otmin — % 1 j€{0,1,....T}}

because there is the sum of finite number of samples evaluated by character-
istic function in (3.13). Thus the value of Z., ; as a function of the tuning
parameter ¢ for the deterministic simulation with fixed randomness is piece-
wise constant. Even the expected value estimation (3.40) calculated from N
sample simulations does not help, because it only extends the number of pos-
sible discrete values. Therefore it is difficult to calculate the improvement of
small perturbation of tuning parameters to the constraint satisfaction. This
fact kills the numerical approximation of gradient used by the deterministic
optimization method.

To eliminate the discrete valued function Z.,; a continuous piecewise
linear interpolation ¢;; of the original constrained signal c¢;; on the dis-
crete time span ¢t = 1,...,T is used instead. The measure of the constraint
satisfaction is obtained as a volume of the continuous time where the inter-
polation ¢;; lies inside the bounds. The interpolation is defined as

T-1

Gip = Y (con+ (Ciprr — o) (t = k) Xprsn) (8),
k=1

where each summed term represents the affine combination of two adjacent
discrete values of ¢;;, and ¢; 41. Each affine combination is limited to the
particular interval by the characteristic function X4 x41)(f) of continuous
time in the half-closed interval [k, k+1). The sum just puts these particular
interpolation into a series. See Figure 3.4.

Accumulation of ratio Zz,; of continuous time variable ¢;; where con-
straints are satisfied, see the grayed intervals in Figure 3.4, is evaluated from
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@ discrete time sample

— continuous interpolation
- - bounds

signal inside bounds

Figure 3.4: Linear interpolation of discrete signal.

the original discrete time samples c;; by

S

—1

7 1
ép,i = Omin — Wit
P T-1 pt ’

where the non-integer relative indicator w;; of constraint satisfaction of
continuous interpolated variable ¢; in the particular interval between two
discrete samples [t,t + 1) evaluates to

min
i

max (¢ min(cP8¥ ¢; 11 1))—max (e min(cPe* ¢; 1))

T for ¢t # cit+1
Wit =4 1 for c;.t = cip41 € Cj

0 for ¢y = cip1 € Ci

The fraction in the first case measures the “vertical” interval of the line
interpolation limited to the bounds and divided by the total unlimited “ver-
tical” interval length. Since the interpolation is linear, this ratio is the same
as length of the “horizontal” interval, which represents the amount of time
where the interpolation lies inside the bounds between the particular in-
teger time instants. The first case covers all possible adjacent constraint
values combination up to a situation where both are of the same value, this
situation is covered by the second and third case.

3.6.3 Handling Quality Functions Shape

The two previous sections solved problems with randomness and non-
smoothness of the quality functions Z, and Z. for purpose of quasi-
newtonian constrained optimization which is suitable for deterministic and
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smooth functions. Still there are some adverse situations making the opti-
mization method difficult to succeed.

Shape

The typical shape of the quality functions Z, and Z. for a case of noise
compensation task is shown in Figure 3.5 for the case of one-dimensional
tuning parameter and one constraint. The function Z, is low close to the
origin because the tuning parameter as a penalization weight for small values
enables the controller to perform intensive control actions to compensate the
disturbance well. Therefore the function Z. is high close to the origin. As
the penalization increases the control actions are attenuated so the function
Z. decreases and Z, increases as the disturbance is less compensated. At
some point the function Z. becomes non-positive and from this point towards
bigger penalization the constraint is satisfied. This situation in Figure 3.5
was shown for system with low parameter uncertainty for that the LQG
controller is capable to overcome this uncertainty without loss of stability.

0.8

07

06

05

0.4

03

0.2

01t/

oF

01 L L =+ L L " L L i

Figure 3.5: Closed loop quality Z, and Z, for SISO case depending on tuning
parameter ¢ for system with low model parameter uncertainty

In Figure 3.6 there is the same situation drawn where the parameter
uncertainty is high. For big penalization values the situation is almost same
as in Figure 3.5 but for small penalization the controller—system model mis-
match leads to worse noise compensation up to a loss of closed-loop stability
close to the origin. This property is visible on the increase of function Z,
close to the origin in comparison with figure 3.5. The function Z, is non-
monotonous in this case. The effect on function Z. also increases its value
close to the origin but this function remains monotonously decreasing.

The closed loop results for two-dimensional penalization with low pa-
rameters uncertainty are shown in Figure 3.7.
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Figure 3.6: Closed loop quality Z, and Z, for SISO case depending on tuning
parameter ¢ for system with high model parameter uncertainty

Flatness Problem

A difficulty for the optimization method takes place in region far from the
origin where both the quality functions Z, and Z, are very flat. The impre-
cision caused by iterative evaluation of the loss functions comparing to the
low gradient is high enough to disable the gradient approximation by finite
perturbations. As a result the quasi-newtonian method fails to get out of
this flat region.

Since the shape of the quality functions is not known a priori, it is not
possible to avoid the optimization method to get to this flat region. Even
starting from a point very close to the origin does not solve this problem,
because the optimization method often makes the first step rather big, thus
ending far from the origin again. Also the problem of instability for models
with higher parameter uncertainty and low control action penalization, see
Figure 3.6, complicates the selection of too low penalizations.

Suitable Starting Point

To avoid the problem in the flat region a simple preliminary optimization
is done to find a good starting point for the quasi-newtonian constrained
optimization. The preliminary optimization is based on the monotonicity
property of the function Z. and it finds a zero crossing point of this function
on a single dimensional set given by a ray starting from the origin and cross-
ing a given guess of the suitable tuning parameter value, for LQG controller
initial approximation of tuning parameter see Section 4.2.

The zero finding on a single-dimensional space for monotonous function
is done without need of gradient evaluation thus avoiding possible problems
in the flat regions.
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Figure 3.7: Closed loop quality Z, and Z, for MIMO case with two dimen-
sional tuning parameter ¢

At the found zero-crossing point of function Z. the constraints are sat-
isfied, thus the optimization method does not attempt to make far step
towards flat regions. This point is also used as a hint for size of finite per-
turbations for gradient estimation to make it big enough with respect to the
calculation errors and small enough to obtain the good gradient approxima-
tion. It is chosen as 1/10 of the norm of the zero-crossing point.

The one-dimensional zero-crossing search is faster than the multidimen-
sional optimization, thus it saves the much of the computation time and the
multidimensional optimization is run finally to find the optimum starting
from the rude approximation.

3.7 Controller Tuning Implementation
During the work on this topic the software implementation of the tuning was
developed. In this section, the algorithm of the tuning is presented first and

then the whole composition of the Matlab toolbox Designer including its in-
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tegration with the other toolboxes the Mixtools and Jobcontrol is described
briefly.

3.7.1 Controller Tuning Algorithm

The particular methods used for the task of controller tuning described in
this chapter are now summarized and ordered in the form of an illustrative
algorithm of possible implementation for the ARX system model. However
the algorithm is proposed for a general controller, this thesis is concerned
in the LQG controller, see Section 4. Some remarks in the algorithms refers
explicitly to the LQG controller.

The optimization and evaluation loops are described only, as they are
the main topic of this work. The results of the system identification are
supposed to be already available from the toolbox Mixtools, for details see
for example [?].

The algorithm follows:

1. Obtain the task specification

e Model parameters pdf (6, R|Vo, v,), see (2.22). Known from the
identification.

e Desired reference trajectory and the respective loss function Z,.
Given by the user.

e Constraints imposed on input signals and the respective con-
straint function Z., see Section 3.4. Given by the user.

2. Select initial estimate of tuning parameter value ¢ for particular type
of controller used. The initial estimates for the case of LQG controller
are described in Section 4.2.

3. Optimization loop
(a) Initialize statistics Z)¥ and Z2 of multiple simulations by zeros

for the summation (3.14).

(b) Initialize pseudo-random number generator by a fixed value in
order to assure fixed randomness £, see Section 3.6.

(¢) Multiple simulation loop

1. Initialize simulation

e Initialize simulation statistics Z, and Z. by zeros for pur-
pose of calculation (3.8) and (3.12) or (3.13).

e Set initial values of signals to the mean values of identi-
fication data.

e Set time counter ¢ to one.
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e Initialize the adaptive controller estimate of the con-
trolled model parameters f(© 4), see Section 3.3.2, of the
adaptive controller to be equal to the off-line estimated
pdf f(©) from identification.

(d) Simulation loop.
i. Perform one output data y; sampling y; from the distribution
described by the pdf f(y|ut, i) (2.23).

ii. Update the statistics of Z. and Z, according to (3.8) and
(3.12) or (3.13) using newly available data.

iii. Exit the simulation loop and continue from 3e, if the estimate
of the functions Z. and Z, is representative. This is decided
by a stopping rule, see Section 3.5.4, whenever:

e Enough information is collected — for noise compensation

e All important changes in reference trajectory passed —
for servo control task

iv. Update the controller estimate of the controlled model f(© 4)
using the last sampled data, see (2.19).

v. Design a controller K; based on the current tuning param-
eters ¢ and the point estimate ©4 of the adaptive model
parameters pdf f(©4).

vi. Set t = t + 1, generate a new system input u; using the
controller K.

vii. Continue with the next simulation step 3d.

(e) Update the multiple simulation statistics Z¥ and Z using the
simulation results in form of samples of Z. and Z,,.

(f) Exit the multiple simulation loop, if there is enough information
collected according to the stopping rule described in Section 3.5.3.

(g) Otherwise continue with next multiple simulation loop 3c.
4. Optimization loop branching
e If the selected deterministic optimization method finds the opti-
mum, return the optimal tuning parameter value g as the result.

e If no feasible solution can be found report an error.

e Otherwise the optimization algorithm chooses a new optimum
approximation g according to newly obtained values Z» and Z¥
and continues with a new optimization loop 3.

For the case of LQG controller, the initial estimate of tuning parameters,
the point 2, and controller design and action, points 3(d)v and 3(d)vi, are
described in Chapter 4.
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3.7.2 Designer Toolbox

The presented controller tuning algorithm was implemented as the core part
of the Designer toolbox. However, the real implementation is of course much
more complex than several nested loops.

Jobcontrol

Designer

Mixtools

Figure 3.8: Structure of the Jobcontrol toolbox

The Designer—a toolbox responsible for the controller tuning—forms a
part of the toolbox Jobcontrol [?] that handles the whole process of the
controller design with utilizing the basic algorithm of the toolbox Mixtools
[?]. The composition of these toolboxes is shown in Figure 3.8.

The Jobcontrol processing starts with the identification data measured
on the real system and finishes with the designed controller and its verifica-
tion. The complete processing is divided into several steps, see Figure 3.9.
Let us present all the steps of the controller design briefly.

Data pre-processing

L]

Structure estimation

L]

Parameter estimation

L]

Forgetting factor estimation

L]

Controller tuning

L]

Verification

Figure 3.9: Steps of controller design

61



Data Pre-Processing

Data forms the basic source of information about the process. Data pre-
processing is the starting step of the design. The raw data are sampled
and/or grouped according to the expected range of the control period, scaled
to similar numerical level, outlying data are removed, and high frequency
noise is suppressed. These simple standard signal-processing actions are
vital for numerical treatment and potential validity of the model. Data pre-
processed in this way are used in steps that follow. The same scaling has to
be used whenever appropriate, for instance for scaling of the set point. The
scaling is stored for purposes of reporting results of the whole design in the
original scale.

Structure Estimation

Model structure characterizes significant data input-output relationships.
The structure is connected with the used parametric system model, such as
ARX one, where some parameters are selected as important characteristics
of the system. The rest of parameters marked as unimportant is considered
to have zero value.

Essentially, the most probable structure conditioned by the measured
data and prior information is searched for within a rich space of model
structures. The search is locally guided in a direction of the best struc-
ture probability. This is based on the general theory of Bayesian structure
estimation [?]. Other details can be found in [7].

Parameter Estimation

This step estimates unknown model parameters selected as possibly nonzero
by the structure estimation. The Bayesian set up is used for this purpose.
The real data, fictitious data reflecting prior knowledge, control period, and
model structure serve as input to this step. The adopted estimation qualifies
the range of possible models by probabilities reflecting processed knowledge.
Consequently, it provides uncertainties of the resulting estimates even after
processing of a limited amount of the data. The uncertainties are con-
sidered in the closed loop behavior evaluation. For the ARX model, the
Bayesian estimation leads to an algorithm formally equivalent to recursive
least squares. It is known to be numerically sensitive so its numerical robust
factorized version [?] is implemented. The estimation results, used in the
rest of the design, serve for initialization of the on-line estimation of the
controller adaptation process and provide the alternative model needed in
stabilized forgetting.
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Forgetting Factor Estimation

Forgetting is a process applied in the on-line use of the considered adap-
tive controller. It suppresses the obsolete information on model parameter
estimates. Its use converts self-tuning controllers into truly adaptive ones.
Forgetting is known to increase the sensitivity of the parameter estimator
to informative content of the processed data. This sensitivity has inhibited
applications of adaptive control for a long time. The advanced stabilized
forgetting [?] is used within the controller design task. This forgetting is
controlled by the model obtained in the off-line estimation and by an op-
tional forgetting factor that is estimated in this step. Essentially, the most
probable forgetting factor is searched among finite set of alternative values.
Details about the estimation of forgetting factor can be found in [?].

Controller Tuning

This step forms the central topic of this work. The algorithm described in
Section 3.7.1 is placed here.

Verification

The controller verification step evaluates performance of the closed loop
formed by the controller and controlled system or realistic model. Use of
the controller in closed loop is the final test of design success. Discrepancies
between expected and real design results have to be carefully considered
and if the results are not acceptable, the whole design should be repeated
with a changed specification. The possible discrepancies are caused either
by unrealistic wishes and constraints or by a bad model quality. The latter
one is caused by the lack of informative data that was not substituted by a
sufficient prior knowledge.
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Chapter 4

Design of the Adaptive LQG
Controller using ARX Model

The adaptive LQG controller is suitable for control of stochastic systems.
Although the presented approach of the controller tuning is not derived for
any particular controller, the LQG one was selected because it is derived
directly for the systems with Gaussian noise. In this chapter, the descrip-
tion of the LQG controller is given, the tuning parameters determining the
control criterion are explained, and finally two techniques to obtain an ap-
proximation of the proper tuning parameter values are described.

4.1 LQG Controller Principle

The classical principle of the LQG controller is shown in this section for the
state space model. Let us consider the state space model

o1 = Api+ Bug+ef
Yt = Cgot—l—Dut-l—e%’,

where ef and e} are white Gaussian noise signals.
The aim of the control is to minimize the expected value of the following
quadratic criterion

t+h—1
Jy = (P:‘,+hQ<P‘Pt+h + Z (@;Q@(PT + u/rQuuT)

T=t

determined by the positive semi-definite matrices @, and Q.
The solution is found in the form of the input signal generated by the
linear control law

up = —K'(01-1, Qu, Qp)pr—1. (4.1)
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Matrix gain K(-) € R%% results from the dynamic programming, Section
2.3.3, that reduces to the solution of the Riccati equation [?]

K = (Qu + B'SyB)"'B'SpA. (4.2)

The positive semi-definite Riccati matrix Sy computed from the Riccati
equation

S; = A/SZ‘_HA - A,SZ‘_:,_lB(Qu + B/SZ‘_:,_lB)ilB,SZ‘_;,_lA + Q¢,, (43)

starting from known Sj, = Q.

4.1.1 Adaptive LQG Controller for ARX Model

The LQG controller, used in this thesis, is based on the ARX system model
(2.21). This model is in the adaptive case recursively updated, see Section
3.3.2, and its parameters are denoted by subscript A

fWelvy, ©a) = fyelhe, 04, Ra) ~ N(Oahy, Ra), ©a=(04,Ra). (4.4)

Adaptive LQG controller uses the current point estimates 0 A:t—1 of the
estimated parameter pdf f(64|d(t — 1)) and minimizes the quadratic loss J;
over the h-th receding-horizon

= [x]el] 49

T=t

determined by positive semi-definite matrix Q).

The LQG controller for the ARX model is formally equivalent to the
state space model shown in Section 4.1, and also the linear control law is
obtained. The exact solution of the Riccati equation (4.3) for ARX model
is of course different from the state space model. For its safe numerical
evaluation the factorized equivalent is used, see [?].

4.1.2 Tuning Parameters of the LQG Controller

All parameters of a controller that are constant through the simulation pro-
cess can be tuned by the adopted methodology. In the case of the LQG
controller, the tuning parameters are represented by the kernel @) of its
quadratic criterion (4.5).

The number of independent elements of matrix () is often high and its full
optimization is computationally intensive. Moreover, the necessary positive
semi-definiteness of the matrix () represents a significant constraint imposed
on its entries.

It is also worthwhile knowing the physical meaning of particular tuning
parameters, which is rather difficult in the situation of the whole matrix Q).
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Thus, the quadratic criterion constructed from smaller and simpler pieces is
suitable to decrease the problem of dimensionality. It is wise to parameterize
@ by tuning parameters with a good intuitive physical meaning. It allows
us to get control over particular properties of the controller. The following
quadratic criterion is considered

t+h
Jp = Z(‘Jll%;r + qQ;Tl%;T Tt qélg?T)’ (46)

T=t

where the scalar weights g, > 0, called penalization coefficients, are taken as
the tuning parameters. The linear vector function /; depends on quantities
y¢ and 9y and measures the signal deviations from the desired values. The
particular elements of the function I; are weighted by the tuning parameters
q.

Generally, the overall criterion (4.6) depends on quantities y; and )y
in the same way as the full quadratic criterion (4.5) does. It makes sense,
however, to fix the linear functions and let the designer of the LQG controller
find the weights ¢, only.

Typical forms of the quadratic criterion, given by specific function I,
and their correspondence with the constraints imposed on particular signals
follow.

The regulation problem is the simplest variant. The controller drives the
system in order to keep the output close to the desired set point y™f and
the input close to its reference value u™. Penalizations are then chosen to
penalize the output error and to penalize difference of the input from its
reference value

I = |yue — i 2 — o5 ua — i ug — usT L (4.7)
Penalization weights belonging to the model output gqi,...,q; and input
qj+1,- - > @y+qa have to be set to represent optimal trade-off between regu-

lation error and actuator effort. The discussed penalizations suit well for
tuning of the controller that respects constraints on the range of the system
input while minimizing regulation error.

The joint servo-regulation problem is obtained by allowing time depen-
dent y™f. In this case, limits on input increments are put more often. Then,
the appropriate penalization of input increments is

ref ref
ly = [yl;t Yt Y25t — Youps - -5 ULp — ULje—1, U2t — U1, - - } . (4-8)

This discrete-time analogy of the first derivative can be extended to the
penalization of the discrete-time analogy of higher order derivatives.

To cope effectively with the constraints of mutually dependent signals
in case of MIMO system, the corresponding l; vector function entry has to
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be included. For instance, closeness of two input signals is controlled by the
following entry

Uizt — Ujzt, ©F ] (4.9)

This kind of penalization is called non-diagonal because of its matrix repre-
sentation as a quadratic form.

Note Though the function [; might resemble the constraint vector ¢,
see Section 3.4.2, forming the function Z. (3.11) or the argument of the
quadratic criterion (3.8) forming the loss function Z,, there is a basic dif-
ference. The function I; is parameterized by the tuning parameters ¢ and
it determines the properties of the LQG controller through its quadratic
criterion J; (4.6). Thus the criterion J; is not any global measure of the
controller quality. It is merely a tool changed by the controller tuning pro-
cess in order to satisfy user’s requirements represented by absolute—not
parameterized—Iloss function Z, and constraint function Z..

4.2 Initial Approximate of Tuning Parameters

In the remaining part of this chapter, two methods for estimation of reason-
able initial tuning parameter values are introduced. The first method yields
an approximation of the input penalization by using the estimated system
model and the second method approximates both the input and output pe-
nalizations with respect to the desired closed loop variances and also gives
an upper bound of the output penalization.

4.2.1 Approximate Lower Bound of Tuning Parameters for
LQG Controller

First estimation uses a pilot solution of the Riccati equation (4.3) with
all matrices marked by zero in superscript. Riccati matrix S? computed
recursively by the Riccati equation with Q¥ set to zero can be used as an
approximate lower bound of matrix @),.

Considering factor

Qu + B,Sz'+1B

from (4.3), the control law solution does not significantly change if @, is of
smaller order than the term B’S;,1B. This term is, however, dependent on
(@2, and therefore it cannot be used to determine the bound on @, directly.
Using matrix S? , evaluated from the Riccati equation with matrix Q0 = 0
on the same horizon and the same matrix @)y, gives us a useful estimate
S9 < S, in the sense of positive semidefinitness.

This holds because criterion J; in (4.5) is smaller if the term in its defining
summation is smaller. Thus, for J calculated for Q¥ = 0 holds J? < J; for
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any initial state ;. The criterion J; can be also written as
Ji = ¢Sopr and JP = @S0,

therefore 58 < Sp in the sense of positive semidefinitness.

4.2.2 Tuning Parameters Approximation Using Fully Prob-
abilistic Design

In this section, a method called the Fully Probabilistic Design is used to
obtain initial approximations of the optimal tuning parameter values from
the properties of this design method.

Fully probabilistic design [?] solves the dynamic decision task from Sec-
tion 2.3.3 that searches for a stochastic controller given by pdf f(u¢|pi—1)
for a given system model f(y;|¢;) such that the Kullback-Leibler divergence
of the density of closed loop behavior of proposed controller to some ideal
density is minimized. The ideal closed loop behavior is given by pdfs of ideal
controller ’f(us|ps—1) and ideal system *f (y¢]1y).

minimize D (f(d(T)[d(0))]| *f(d(T)|d(0)))

over f(uepi—1)
T
where f H yT |¢T UT |§07' 1)
=1
T
and If H erJT uT“PT—l)v

where Dk, (+||-) is the Kullback-Leibler divergence (3.20). This rather gen-
eral formulation has a solution for the Gaussian ARX model and static ideal
distributions.

F(yelvr) ~ N(Oai|Ra)
Tflyelwe) ~ NO0,Q,")

Tfulpr1) ~ N(0,Q,")
(4.10)

The resulting controller pdf has the form

f(ut‘SOt—l) ~ N(Kpi-1, Ry)

where matrix K is the same as the linear control law (4.2) produced by LQG
controller with quadratic criterion

T
= ulQuur + Y. Qyyr
=1
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and added white noise of certain variance R,. For more detail see [?].

From this result, it is possible to approximate the matrices @, and @,
from desired respective variances @, ! and Qy L which are for one step hori-
zon closest to the ideal.

The second advice obtained from the fully probabilistic design is that it
makes only sense choosing the desired output signal variance @, I not less
than the process noise covariance R of the model f(y:[t). Thus Q, I'>Rin
positive semi-definiteness. If no special requirement for the output variance
are given, the choice Q) 1 = R is the reasonable one.
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Chapter 5

Experiments

This chapter presents several simulated experiments where all the steps of
the controller design performed by the Jobcontrol toolbox are demonstrated
emphasizing the controller tuning task — the main topic of this work.

The first part, Section 5.1, shows the properties of designed controller
for a simple system with various design settings. Then Section 5.2 presents
a controller design for a complex model of binary distillation column.

5.1 Simple MIMO System

The first set of experiments is demonstrated on a simple MIMO system
of two inputs and two outputs. Purpose of these experiments is to show
basic properties of the proposed algorithm and to verify its reliability for
more complex tasks such as the distillation column control presented in the
next section. The discrete MIMO system is constructed from a set of SISO
subsystems interconnected as shown if Figure 5.1.

Figure 5.1: MIMO ARX system constructed from four SISO subsystems.

Reasonable discrete-time SISO system blocks are obtained by discretiza-
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tion of continuous-time SISO blocks. The SISO blocks
1

s =[]

s+1.2  s+1.4

are discretized with sampling period 0.1 resulting to a discrete-time blocks
S(z) where JjZ

- = 5ij(2)

0.04712 0.09332
z—0.8869  z—0.8694

Noise signal is filtered in order to create an ARX model. Thus the filter
has unit numerator and its denominator is the product of the denominators
of respective blocks for given output. The noise power is 1 - 1075,

The Jobcontrol toolbox has not access to the exact definition of this
system. It uses data generated from it and identifies its own model of the
controlled system. Only in the verification of the designed controller the
original system is used to prove the capabilities of the controller.

There were 10000 data samples generated for the Jobcontrol identifica-
tion. The driving input signal was white noise distributed by N(0, 1).

0.0961 0.04758
S(S) — [ 2—0.9231  2—0.9048 ]

5.1.1 Identifiacation
The system is identified in form of ARX model
Yt = (91/1t + Ret, €t N(O, 1)

where the model parameters © are divided into the coefficient parameters
and covariance © = (0, R) as described in Section 2.6. For the identifica-
tion an ARX model of maximal order of two was used. Model structure
estimation selected only some model parameters to be estimated, while the
rest is considered unimportant and set equal to zero. The estimated model
parameters are obtained as a posterior Gauss-inverse-Wishart distribution
(2.22). For illustration the maximum likelihood estimate parameters form
the following model

yo = 1.82y14 1 — 0.832y142 + 0.0961u1 41 + 0.0475uz,—1 —
— 0.0867uy_s — 0.0437ug,_o + 1.07 - 10 5y,
Y1 = 1.753/1,15_1 — 0.768y1,t_2 + 0.0471U1,t—1 + 0.0933’[1,2’15_1 —

0.0407u1 42 — 0.082ug4 2 + 1.05 - 10 ey 4.

To show the parameter uncertainty the diagonals of parameter covariance
follows

diag(cov®;) = [1.0-1073, 8.40-107°, 8.62-1075,
721073, 4.2-107%, 2.9-1077]
diag(cov®s) = [1.8-1073, 8.40-107°, 8.62-1077,

7.7-1073, 1.0-107%, 1.3-1072).
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The order of parameter elements in © corresponds to the order of parameters
in the point estimate model above.

5.1.2 Servo-Control Task

The designed controller has to follow reference trajectory with steps in both
output channels in different times

¥yl =0 for ¢ < 100 (5.1)
vl =1 for ¢t > 100 (5.2)
Yy =0 for t < 200 (5.3)
y =1 for ¢ > 200 (5.4)
while keeping the input signals in specified range
ULt € <—5, 5> (

As this task falls into servo control, Section 3.4.3, the constraint function is
chosen to measure maximal constraint violation according to (3.12).

The tuning parameters were selected to penalize the input signals mag-
nitude. The penalization of outputs was fixed one.

t+h
Ji = Z yif + y%;T + qwiT + un%;T.

T=t

The LQG horizon length h was 100 steps.

The initial estimate of the tuning parameters was obtained using the
lower bound approximation described in Section 4.2.1. This initial estimate
at [0.0541,0.0541] was refined to value [0.0229, 0.0218] by single dimensional
search of zero crossing of the constraint function as described in Section
3.6.3. Finally the multidimensional constrained optimization found the op-
timum at [0.0218,0.0171].

The simulated run of the tuned controller with the estimated model of
the controlled system is shown in Figure 5.2. To evaluate the obtained
controller the verification with the original system is shown in Figure 5.3.
The predicted and verified behavior are very similar, thus the controller
design was successful.

Controller for Different Input Signal Ranges

The values of tuning parameters for controller design under the same con-
ditions as in the previous section but for different input signals ranges are
shown in the following table.
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Sample simulation run of predicted behavior
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Figure 5.2: Prediction of controller designed for constraints of (—5,5) for
both inputs

Allowed range for inputs | Resulting tuning parameter Zo
up € (=5,5), wug € (—5,5) [0.0218,0.0171] 0.0057
up € (=3,3), wu2 € (-3,3) [0.0735,0.0524] 0.0107
up € (=1,1), wug € (—1,1) [0.565, 0.4006] 0.0641
up € (=5,5), w2 € (—3,3) [0.0209, 0.0513] 0.0096

The constraints were satisfied for all ranges. As the elements of tuning
parameter vector penalize the respective elements of the input signal, their
reciprocal dependency on the input intervals size can be seen.

Controller with Constrained Input Increments

This section modifies the controller designed in the beginning of Section 5.1.2
so that the constraints on the input magnitudes are replaced by constraints
on input increments. The tuning parameter vector was extended by elements
penalizing the increments. The quadratic criterion of LQG controller is now
in the form

t+h
Jy = Z y%;T + yg;’r + qlu%n’ + qQU%;T + q3Au%;T + q4Au%;7’

T=t

where Au; = up — up—1.
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Sample simulation run of verification
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Figure 5.3: Verification of controller designed for constraints of (—5,5) for

both inputs

The tuning procedure used the increment penalizations g3 and ¢4 to
achieve the desired behavior, while the magnitudes penalizations ¢; and ¢
are very small. The verification simulation run of controller designed for
interval (—1,1) for both inputs is shown in Figure 5.4. This experiment was
repeated for different input increments constraints with results shown in the
following table.

Allowed range for increments Resulting tuning parameter Zo
Auy € (—5,5), Aug € (=5,5) | [0.0001,0.0003,0.0110,0.0128] | 0.0049
Auy € (—3,3), Aug € (—3,3) | [0.0003,0.0004,0.0462,0.0519] | 0.0059
Auy € (=1,1), Aug € (—1,1) | [0.0007,0.0009, 0.6983,0.6985] | 0.0094
Auy € (=5,5), Aug € (—1,1) | [0.0013,0.0018,0.0151,0.6555] | 0.0073

The use of increment penalization removes the problem of constant reg-
ulation error even for rather restrictive constraints in comparison to the
magnitude penalization in the previous experiment.

5.1.3 Regulation Task

Regulation task uses the same settings as the servo-control task in Section
5.1.2, up to zero setpoint. The controller now compensates only the system
disturbance.
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Sample simulation run of verification
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Figure 5.4: Verification of controller designed for increments bounded to
(—1,1) for both inputs

Controller for Different System Disturbance

Settings for this experiments include fixed constraints on inputs Awu; €

<_57 5>7

bance is show in the following table.

Awug € (=5,5). The tuning result for various covariance of distur-

Noise covariance of both e; and es

Resulting tuning parameter

Zo

cove; = coveg = 1
cove; = covey = 11071
cove; = covey = 1-1072
cove; = covey = 1-1073
= coves = 1-107%

coveq

cove; =1-1071,

covey = 1-107%

[3.0977, 8.2269]
[0.3093,0.2272]
[0.0722,0.0272]
[1-1072,1-107Y]
[1-107191.10710]
[0.3477,0.1236]

110
15.6
0.413
0.0043
0.00043
9.77

use decreasing the penalization to keep constraints satisfied.
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As expected, with decreasing disturbance covariance it is sufficient to

Sample verification run for cove; = coves = 1-1072 is show in Figure
5.5.




Sample simulation run of verification
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Figure 5.5: Verification of controller designed for noise compensation

5.1.4 Controller for Different Uncertainty of System Param-
eters

This experiment shows the effect of parameter estimate uncertainty on the
tuned closed loop. It uses the noise compensation for the same settings
as in the previous example with fixed disturbance covariance at cove; =
coves = 1-1071. The parameter covariance cov®; and covOs, described
in Section 5.1.1, are multiplied by various factors to simulate less accurate
identification.

Parameter covariance multiplier | Resulting tuning parameter | Z, max(Z.)
1 [0.3093,0.2272] 156 | —1.7-1077
5 [0.592, 0.284] 18.8 | —3.6-107"
10 [0.961,4.37] 22.4 | —0.00451
15 [2.756,9.27] 30.9 —0.095
20 [4.71,59.4] 48.4 —0.099

The last column in the table shows the maximal constraint violation

of Z..

It can be seen that at smaller parameter covariances, the optimal

controller reaches the constraints, which is indicated by max(Z.) be almost
zero. For bigger parameter uncertainties, the value of max(Z,.) is negative.
This shows the input constraint interval is not used entirely. This is caused
by the fact that controller for highly uncertain system has to be conservative,
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otherwise the controller-model mismatch causes worse control behavior for
controllers using bigger input range, see Section 3.6.3 and Figure 3.6.

5.1.5 Experiment Summary

The experiments above presented properties of controller design consisting
of the identification, controller tuning for both servo-control and noise com-
pensation tasks, and finally the verification of the resulting controller. All
controllers designed in the performed experiments satisfied the given con-
straints. The dependency of the tuning parameters on conditions was shown,
namely several cases of constraint intervals for magnitudes and increments,
covariances of system disturbance and covariances of the uncertain model
parameters were shown in tables.

The satisfactory results of these simple experiments encouraged us to do
more complex tasks such as the experiment described in the following text.

5.2 Binary Distillation Column

This section presents an experiment with a model of binary distillation col-
umn taken from the IFAC benchmark problems [3] example No. 1. This
model has been selected to represent a complex close to real system.

5.2.1 Problem Description

The task is to control a linear continuous system of 11-th order with three
inputs and three outputs with an external disturbance. The description of
the system includes constraints imposed on the input variables and defines
the disturbance to be compensated. As only the allowed ranges for input
signal magnitudes are bounded, the constraint vector ¢;, Section 3.4.2, is
identical to the input ¢; = u;. The particular ranges are:

up € Cl = <—2.5, 2.5>
Ug € CQ = <—2.5, 2.5>
ug € C3 = <—0.3,0.3>

Whereas the control task is to compensate the disturbance, the constraint
function Z.,, (3.13) was selected to represent this type of constraints with
minimal probability of constraint satisfaction being set to amin = 0.9. The
matrix W of the loss function Z, (3.8) was chosen as recommended in Section
3.4.1 as the reciprocal values to the conditional variances of respective output
signals in d;.

A Simulink model was used to model the reality. The scheme in Figure
5.6 contains blocks representing the plant and the disturbance. Matrices
A, B, C of the block “System model” and matrices A, B of the block “Noise
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Figure 5.6: Simulink model of closed loop of binary distillation column.

model” are described in [3]. Matrices D for both blocks are zero with ap-
propriate dimensions.

The data used further in the design were obtained as a response to the
pseudo-random binary signal (PRBS) system input and a disturbance in the
output.

5.2.2 Processing and Results

The control design process passes through the following procedures as de-
scribed in Section 3.7.2:

1. Data Preprocessing. In this case, the data are only scaled and rea-
sonable sampling is chosen. The scaling is done automatically, the sampling
period was chosen Ty = 10s on basis of the step response test. The time
span for measured data was 100000 seconds. The preprocessing took about
a half of second on the AMD Athlon 1800+ processor.

2. Structure Estimation. Data are processed by function determining
the most probable structure of the linear regression model. Prior information
about the gain was used (see [7]) for improved structure determination. The
maximum structure was allowed up to the delay 15 of any variable. The best
structure estimated using prior information consisting of the static gains of
the system is shown in Table 5.1. The calculation took about 4 minutes.

3. Parameter Estimation. Data are used by the parameter estimation
function. Parameters of the linear regression model, having the structure
determined in the previous step, are identified. The resulting MIMO model
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MISO model for channel y;

delays | O [ 1 | 2
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ul
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MISO model for channel ys

delays | O | 1 | 2
Y1 * * *
Y2
Y3
u1
U2
u3

¥ | K| X[
* | Ot
X[ *¥|[* |

* | *| x| *
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MISO model for channel y3

delays O | 1 |2 |3 |4 |5 |6 |7|8]|9]10 |11 |12 | 13| 14 | 15
Y1
Y2

Y3
u1 *

U2 *
u3 *

K| *|[*|[*¥|%¥]|*
¥ * | *|*

*

Table 5.1: Estimated structure of three MISO factors of the binary distilla-
tion column. Nonzero entries are marked by .

is identified in the form of a set of MISO ARX models (2.22). The particular
parameters are not shown here. The calculation took about 3 seconds.

4. Forgetting Factor Estimation. After parameter identification, the
data are processed again with the aim to determine appropriate forgetting
factor. Estimated value is 0.3842. As an alternative model is used the one
obtained in the previous step. The calculation took about 7 minutes.

5. Optimization Procedure. The optimization procedure, Section 3.6,
performs simulations using the identified model as a plant, evaluates the
results represented by fulfillment of the requirements and designs a new
controller tuning parameter settings represented by the penalizations.

The tuning parameters of tuned adaptive LQG controller are defined by
the following quadratic criterion (4.6)

t+h
Jo = Ui+ Yo + Yar + @i, + q2u3, + gsu,,

T=t

with horizon h = 200 for generating the first input sample. The penaliza-
tions for outputs was set to one, because of the signal scaling. The iterations
spread in time (IST) method [?] is used in the rest of simulation.
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The results of the optimization procedure are the recommended penal-
ization and prediction of the closed loop behavior. As the starting point
of the optimization algorithm was chosen the approximate lower bound of
penalization according to Section 4.2.1. The sample path method was used
to find the optimal tuning parameter with starting approximation gg. The
optimization took 64 simulation runs. The optimum found was

q = [0.0093, 0.0232, 0.0284].

The constraints of the first and third input range were active. A sample of
simulation run using the optimal controller is shown in Figure 5.7 and the
histogram of the signal values are in Figure 5.9. Variances and constraint
satisfaction probabilities, estimated as relative frequencies, of signals of the
optimized control loop are shown in the Tables 5.1(a) and 5.1(b) in columns
called “predicted.” The calculation took about 8 minutes.
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Figure 5.7: Sample simulation run in tuning phase. The upper plot shows
the output signals and the lower one shows the input signals.

6. Verification. The verification step confronts the derived setting with
the true plant—in this example with the Simulink model. Sample of sim-
ulation run using the optimal controller is shown in Figure 5.8 and the
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Figure 5.8: Sample Simulink verification run. First three plots shows the
particular controlled and non-controlled output signals and the fourth one
shows the controlling input signal.

histograms of the signal values are in Figure 5.10. Now the differences be-
tween the behavior predicted by the optimized model and the verification
from the original Simulink model can be compared. The variances of sig-
nals are shown in Table 5.1(a) and the relative frequencies of input signal
constraint satisfaction are shown in Table 5.1(b).

5.2.3 Distillation Column Summary

The LQG controller design by the Jobcontrol toolbox performs three main
tasks—system identification, controller tuning, and verification.

The controller tuning part found the controller for which the constraint
imposed on the second input signal uo range is satisfied more than necessary,
while the optimized penalization ¢o is not zero. This behavior is caused by
a small influence of this penalization on the overall closed loop performance,
and by the fact that the optimization method stops when gradient of the
objective is too small. The starting point ¢g of the optimization method
was chosen as the highest reasonable value for which the controller can still
effectively control the system as described in Section 4.2.2.
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Figure 5.9: Histograms of signal values for the simulation run in tuning
phase.

The verification shows that the signals obtained from the control process
in the Simulink use smaller ranges than the predicted one, Table 5.2.2,
therefore, the constraints are satisfied perfectly. This deviation from the
expected behavior is caused by the model identification inaccuracy, though,
the resulta are considered to be satisfactory.
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Figure 5.10: Histograms of signal values for the Simulink verification run.

(a) Signal variances

predicted | verified
0l 0.0181 0.0075
Y2 0.0033 0.0013
Y3 0.0129 0.0048
up 1.2246 0.5214
ug | 0.7081 0.2745
uz | 0.1845 0.0761

Table 5.2:

(b) Relative
straint satisfaction

frequencies

con-

predicted | verified
uy 0.94 1.00
Ug 1.00 1.00
us 0.88 1.00

Simulink model verification of the experiment.

Comparison of the optimization result prediction with the



Chapter 6

Conclusions

The controller tuning is a necessary part of any controller design. Though,
the tuning is still not fully explored for the model based controllers. The
presented work contributes to this topic by developing a methodology for
tuning of the adaptive LQG controller with constraints imposed on its ex-
ternal variables and under uncertain knowledge of the system.

The thesis, finalizing author’s previous work [?, 2, 7, 7,2 2 27 7 7,
?,7, 7,7, 7], is focused on the adaptive LQG controller tuning. Mul-
tiple constraints and multiple input and output variables are considered.
The method employs the Bayesian approach to deal with the uncertainty
contained in imprecise knowledge of the controlled system. The obtained
controller is calculated with respect to this uncertainty and takes into ac-
count whole range of uncertain parameters. The other methods used are the
Monte Carlo for controller quality evaluation and numerical optimization for
the tuning itself.

The proposed methods and algorithms were implemented as the software
toolbox Designer and successfully tested on several complex experimental
models. The important contribution of the thesis is a step towards freeing
the control engineers from manual controller tuning and to support usability
of the model based controller in the practice.

6.1 Summary of Contributions of this Thesis

This section summarizes the most important assets of this work in a list of
points. The main point is given in the following sentence:
The automated design algorithm of multivariate adaptive controller for
stochastic and incompletely known systems with constraints has been de-
veloped.

Some of the most interesting parts of the presented results follow:

Controller tuning The task of controller tuning is to transform the user
specified requirements into the values of the tuning parameters. The
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desired closed loop behavior, considered in this work, is to minimize
the output error while fulfilling the constraints imposed on the action
quantities. To express the desired closed loop behavior, the optimality
conditions are translated into the form of so called quality functions.
The constraints are handled differently in the conditions of the noise
compensation and the reference setpoint tracking tasks.

Respecting incomplete knowledge of controlled system
The system knowledge is incomplete. = The Bayesian estimation
delivers the parameters not as known numbers but represented by a
pdf. The tuning is done for the whole class of possible models thus it
takes into account the uncertainty. The description of the uncertainty
of the controlled system allows to tune the adaptive controller, which
is being adapted while the uncertain model is simulated.

Generalization to multivariate controller and multiple constraints
The important contribution of this work is extending the tuning to the
multiple input multiple output (MIMO) controllers, where multiple
constraints on particular quantities are considered simultaneously.

Use of on-line stopping rules Computational feasibility of Monte Carlo
evaluation was improved by employing on-line stopping rules for speed-
ing simulations. The general approach in [?] was extended to stopping
rules for Markov chains. The rules are based on measuring contribu-
tion of new data samples to the precision of calculated quantity.

Complete controller design was developed The presented work of
controller tuning complements the results in the field of system iden-
tification and uncertainty handling achieved in the Department of
Adaptive Systems in Institute of Information Theory and Automa-
tion, Academy of Sciences of the Czech Republic and thus it allows
the development of the complete controller design.

The model used for tuning is the black box model, where the only con-
nection to the real system is through identification data and prior in-
formation. This approach is advantageous for complex systems where
the physical structure of controlled system is hidden or it is too com-
plex to be used with a model based controller.

It has to be noted that the capabilities of the tuning algorithm are de-
pendent on a good model and realistic constraints that it is possible to
satisfy. The proposed methodology optimizes the designed controller.
Thus it does not guarantee the desired properties, rather it finds the
best controller possible from the class of considered controllers.
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6.1.1 Methods

The techniques and methods used and developed for the controller tuning
task are summarized below:

e Majority of methods used is derived from the general Bayesian decision
making theory.

e Monte Carlo method was used for sampling complex distributions.

e The constrained multivariate stochastic optimization task was solved
using the sample path method.

e A reasonable initial approximation of the searched tuning parameter
values for LQG controller was given.

6.1.2 Algorithms, Software, and Experiments

The methods and algorithms presented in this thesis are accompanied by
the respective software implementation forming the toolbox Designer. The
Designer is included in the Jobcontrol toolbox, which consistently unifies all
the steps needed for the controller design starting from data preprocessing,
identification, controller tuning and others. The presented experiments were
performed using the Jobcontrol toolbox and they show the applicability of
the proposed methods.

The Designer toolbox is developed for general use of controller design.
Currently the LQG controller is only supported, but the construction of the
toolbox is general enough to include other types of controllers.

6.2 Possible Future Work

The quality of the resulting designed controller is very dependent on the
quality of model estimate. The use of the Gaussian ARX model is planned
to be extended to the mixture of Gaussian models [?], which is capable to
better approximate a much wider class of systems. The controllers used for
the mixture models are based on the fully probabilistic design. The tuning
of this kind of controller forms a natural continuation of this work.
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